[Journal logo]

Volume 68 
Part 12 
Pages m1538-m1539  
December 2012  

Received 31 October 2012
Accepted 6 November 2012
Online 28 November 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.007 Å
R = 0.044
wR = 0.133
Data-to-parameter ratio = 16.0
Details
Open access

Bis{[mu]-2-[(pyrimidin-2-yl)aminomethyl]phenolato}-[kappa]2N1:O;[kappa]2O:N1-bis({2-[(pyrimidin-2-yl-[kappa]N)aminomethyl]phenol}silver(I)) dihydrate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: seikweng@um.edu.my

The AgI atom in the title centrosymmetric dinuclear compound, [Ag2(C11H10N3O)2(C11H11N3O)2]·2H2O, shows a T-shaped coordination arising from bonding to the N atom of a neutral 2-[(pyrimidin-2-yl)aminomethyl]phenol ligand, the N atom of the 2-[(pyrimidin-2-yl)aminomethyl]phenolate anion [N-Ag-N = 171.8 (1)°] and the terminal O atom of the other anion [Ag-O = 2.606 (3) Å]. A pair of 2-[(pyrimidin-2-yl)aminomethyl]phenolate anions link the two AgI atoms to form the dinuclear compound. In the crystal, adjacent dinuclear molecules are linked to the lattice water molecules, generating an O-H...O- and N-H...O-connected three-dimensional network. In the crystal, the hydroxy H atom is disordered over two positions in a 1:1 ratio; one half-occupancy H atom is connected to one hydroxy group, whereas the other half-occupancy H atom is connected to another hydroxy group.

Related literature

For the structure of 2-{[(pyrimidin-2-yl)amino]methyl}phenol, see: Xu et al. (2011[Xu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3258.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C11H10N3O)2(C11H11N3O)2]·2H2O

  • Mr = 1054.67

  • Monoclinic, P 21 /c

  • a = 9.2992 (4) Å

  • b = 24.808 (1) Å

  • c = 9.8158 (5) Å

  • [beta] = 108.453 (1)°

  • V = 2148.02 (17) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.98 mm-1

  • T = 293 K

  • 0.23 × 0.20 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.807, Tmax = 0.852

  • 20943 measured reflections

  • 4910 independent reflections

  • 3230 reflections with I > 2[sigma](I)

  • Rint = 0.063

Refinement
  • R[F2 > 2[sigma](F2)] = 0.044

  • wR(F2) = 0.133

  • S = 1.11

  • 4910 reflections

  • 307 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 1.27 e Å-3

  • [Delta][rho]min = -1.29 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1o...O2i 0.84 (1) 1.68 (3) 2.504 (4) 166 (12)
O2-H2o...O1ii 0.84 (1) 1.68 (3) 2.504 (4) 166 (13)
O1w-H11...O2iii 0.84 (1) 2.31 (6) 2.927 (5) 130 (6)
O1w-H12...N3iv 0.84 (1) 2.27 (2) 3.085 (5) 165 (6)
N1-H1...O1v 0.88 (1) 1.99 (1) 2.863 (5) 176 (4)
N6-H6...O1w 0.88 (1) 2.08 (2) 2.943 (5) 169 (5)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5644 ).


Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023, No. 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010-04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.  [CrossRef] [ChemPort]
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Xu, J., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o3258.  [CSD] [CrossRef] [details]


Acta Cryst (2012). E68, m1538-m1539   [ doi:10.1107/S1600536812045783 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.