metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1540-m1541

Poly[[[μ3-(E)-N-(pyridin-4-yl­methyl­­idene)hy­dr­oxy­laminato-κ3O:N:N′][μ2-(E)-N-(pyridin-4-yl­methyl­­idene)hydroxyl­amine-κ2N:N′][(E)-N-(pyridin-4-yl­methyl­­idene-κN)hydroxyl­amine]­disilver(I)] nitrate]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 November 2012; accepted 7 November 2012; online 28 November 2012)

The title coordination polymer, {[Ag2(C6H5N2O)(C6H6N2O)2]NO3}n, features a deprotonated N-(pyridin-4-yl­methyl­idene)hy­droxy­laminate anion and two neutral N-(pyridin-4-yl­methyl­idene)hydroxyl­amine mol­ecules in the asymmetric unit. The anion connects three AgI atoms through its O and two N-donor atoms. One neutral ligand functions in a monodentate mode; the other functions in a bridging mode, binding though its two N atoms. The coordination geometry of the two independent metal atoms is T-shaped; the manner of bridging gives rise to a layer motif parallel to (100). In the crystal, the nitrate ion is disordered over two positions in a 1:1 ratio, and is sandwiched between adjacent layers. O—H⋯O hydrogen bonding is present between nitrate ions and layers, and also between adjacent layers.

Related literature

For mononuclear (Nitrato-κ2O,O′)bis­[(E)-N-(pyridin-4-yl­meth­yl­idene-κN)hy­droxy­amine]­silver(I), see: Gao & Ng (2012[Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, m1542.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C6H5N2O)(C6H6N2O)2]NO3

  • Mr = 643.13

  • Monoclinic, P 21 /c

  • a = 13.1628 (18) Å

  • b = 10.9926 (18) Å

  • c = 16.315 (2) Å

  • β = 110.412 (4)°

  • V = 2212.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 293 K

  • 0.20 × 0.12 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.712, Tmax = 0.811

  • 21226 measured reflections

  • 5047 independent reflections

  • 3355 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.07

  • 5047 reflections

  • 306 parameters

  • 26 restraints

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—O1 2.612 (3)
Ag1—N3 2.151 (3)
Ag1—N5 2.158 (3)
Ag2—O1i 2.546 (2)
Ag2—N1 2.161 (3)
Ag2—N2ii 2.183 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 0.84 1.81 2.642 (9) 169
O2—H2⋯O4′ 0.84 2.21 2.997 (14) 156
O3—H3⋯O1iii 0.84 1.69 2.527 (4) 174
Symmetry code: (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The preceding report presents the crystal structure of bis(isonicotinylaldehyde oxide)(nitrato)silver (Gao & Ng, 2012). When some ammonium hydroxide was added to the reaction, the acid hydrogen of the isonicotinylaldehyde oxide is partially removed so that the product consists of a cation having two AgI atoms, one deprotonated ligand and two neutral ligands. The charge is balanced by a nitrate anion. The dinuclear cations are linked by coordination bonds into a polycation (Scheme I). The coordination polymer features a deprotonated N-(pyridin-4-ylmethylidene)hydroxylamine and two neutral N-(pyridin-4-ylmethylidene)hydroxylamine molecules. The anion connects three AgI atoms through its O and two N donor-atoms. One neutral ligand functions in a monodentate mode; the other functions in a bridging mode, binding though its two N atoms. The geometry of the two independent metal atoms is T-shaped (Fig. 1); the manner of bridge gives rise to a layer motif. The anion is sandwiched between adjacent layers (Fig. 2).

Related literature top

For mononuclear bis(isonicotinylaldehyde oxide)(nitrato)silver, see: Gao & Ng (2012).

Experimental top

Isonicotinaldehyde oxime was synthesized from the reaction of isonicotinaldehyde and hydroxylamine. Silver nitrate (1 mmol) dissolved in water (5 ml) was added to picolinaldehyde oxime (1 mmol) dissolved in ethanol (5 ml). Several drops of ammonium hydroxide were added. The solution was filtered and set aside, away from light, for the growth of colorless crystals.

Refinement top

Carbon- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.93 Å, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C,O).

The nitrate ion is disordered over two positions in a 1:1 ratio. Nitrogen–oxygen distances were restrained to 1.24±0.01 A and oxygen···oxygen contacts to 2.15±0.01 Å. For each component, the temperature factors of the O atoms were made identical. The temperature factors of the N atoms of the two components were made identical too. The isotropic temperature factors were tightly restrained.

The (3 9 9), (-7 10 13) and (-3 7 18) reflections were omitted.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of polymeric [Ag2(C6H5N2O)(C6H6N2O)2] NO3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the nitrate is not shown.
[Figure 2] Fig. 2. Layer motif.
Poly[[[µ3-(E)-N-(pyridin-4-ylmethylidene)hydroxylaminato- κ3O:N:N'][µ2-(E)-N-(pyridin-4- ylmethylidene)hydroxylamine-κ2N:N'][(E)-N- (pyridin-4-ylmethylidene-κN)hydroxylamine]disilver(I)] nitrate] top
Crystal data top
[Ag2(C6H5N2O)(C6H6N2O)2]NO3F(000) = 1264
Mr = 643.13Dx = 1.931 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10662 reflections
a = 13.1628 (18) Åθ = 3.1–27.5°
b = 10.9926 (18) ŵ = 1.82 mm1
c = 16.315 (2) ÅT = 293 K
β = 110.412 (4)°Prism, colorless
V = 2212.4 (6) Å30.20 × 0.12 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5047 independent reflections
Radiation source: fine-focus sealed tube3355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.712, Tmax = 0.811k = 1414
21226 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
5047 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.77 e Å3
26 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ag2(C6H5N2O)(C6H6N2O)2]NO3V = 2212.4 (6) Å3
Mr = 643.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1628 (18) ŵ = 1.82 mm1
b = 10.9926 (18) ÅT = 293 K
c = 16.315 (2) Å0.20 × 0.12 × 0.12 mm
β = 110.412 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5047 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3355 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.811Rint = 0.047
21226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04226 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 0.77 e Å3
5047 reflectionsΔρmin = 0.43 e Å3
306 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.82406 (3)0.44988 (5)0.68283 (2)0.0906 (2)
Ag20.45572 (3)0.01686 (3)0.114909 (19)0.06273 (15)
O10.6234 (2)0.4403 (3)0.57575 (15)0.0523 (6)
O21.0680 (3)0.1718 (4)0.3037 (2)0.1041 (13)
H21.09460.10230.30410.156*
O30.6612 (3)0.8349 (3)1.07189 (16)0.0633 (8)
H30.65320.91041.07440.095*
O41.1249 (5)0.0582 (8)0.3006 (6)0.1012 (16)0.50
O51.2395 (7)0.1874 (9)0.2869 (8)0.1012 (16)0.50
O61.2906 (5)0.0465 (7)0.3833 (5)0.1012 (16)0.50
O4'1.1788 (14)0.0670 (13)0.3637 (8)0.187 (4)0.50
O5'1.2614 (15)0.1635 (11)0.2915 (11)0.187 (4)0.50
O6'1.2181 (13)0.0236 (10)0.2655 (8)0.187 (4)0.50
N10.5108 (3)0.0936 (3)0.24501 (19)0.0556 (8)
N20.6020 (2)0.3906 (3)0.49497 (17)0.0460 (7)
N30.8829 (3)0.3913 (4)0.5817 (2)0.0707 (11)
N41.0390 (3)0.1859 (5)0.3770 (2)0.0763 (12)
N50.7900 (3)0.5396 (4)0.7881 (2)0.0676 (10)
N60.6741 (3)0.8056 (3)0.99397 (19)0.0522 (8)
N71.2216 (8)0.0974 (7)0.3251 (6)0.0797 (19)0.50
N7'1.2207 (7)0.0713 (10)0.3065 (6)0.0797 (19)0.50
C10.5737 (3)0.1916 (4)0.2613 (2)0.0578 (10)
H10.59780.21980.21750.069*
C20.6052 (3)0.2537 (4)0.3395 (2)0.0553 (9)
H2A0.64910.32230.34750.066*
C30.5710 (3)0.2131 (4)0.4062 (2)0.0510 (9)
C40.5075 (4)0.1096 (4)0.3898 (2)0.0589 (10)
H40.48400.07830.43310.071*
C50.4786 (4)0.0526 (4)0.3098 (3)0.0627 (11)
H50.43540.01660.30010.075*
C60.5966 (3)0.2758 (4)0.4903 (2)0.0536 (9)
H60.60890.23050.54100.064*
C70.9441 (4)0.2916 (5)0.5886 (3)0.0783 (14)
H70.96330.24670.64010.094*
C80.9799 (4)0.2525 (5)0.5230 (3)0.0720 (13)
H81.02240.18300.53050.086*
C90.9516 (3)0.3179 (4)0.4458 (3)0.0614 (11)
C100.8877 (3)0.4200 (5)0.4382 (3)0.0651 (11)
H100.86700.46660.38740.078*
C110.8553 (4)0.4518 (5)0.5069 (3)0.0701 (13)
H110.81140.52000.50050.084*
C120.9898 (4)0.2858 (5)0.3741 (3)0.0706 (12)
H120.97810.33830.32700.085*
C130.7989 (4)0.4791 (5)0.8613 (3)0.0721 (13)
H130.82490.39970.86740.087*
C140.7717 (4)0.5284 (4)0.9274 (3)0.0623 (11)
H140.77950.48270.97720.075*
C150.7327 (3)0.6453 (4)0.9210 (2)0.0528 (9)
C160.7235 (3)0.7088 (4)0.8454 (2)0.0642 (11)
H160.69800.78850.83780.077*
C170.7525 (4)0.6524 (5)0.7817 (3)0.0730 (13)
H170.74540.69600.73110.088*
C180.7078 (3)0.6971 (4)0.9947 (2)0.0563 (10)
H180.71710.64891.04370.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0834 (3)0.1332 (5)0.0585 (2)0.0248 (2)0.0289 (2)0.0216 (2)
Ag20.0788 (3)0.0733 (3)0.03828 (19)0.01131 (17)0.02310 (17)0.01213 (14)
O10.0644 (15)0.0577 (17)0.0356 (13)0.0003 (13)0.0187 (12)0.0058 (12)
O20.111 (3)0.147 (4)0.067 (2)0.034 (3)0.046 (2)0.015 (2)
O30.0896 (19)0.066 (2)0.0418 (14)0.0126 (17)0.0320 (14)0.0045 (13)
O40.079 (3)0.101 (4)0.109 (3)0.025 (2)0.014 (3)0.034 (3)
O50.079 (3)0.101 (4)0.109 (3)0.025 (2)0.014 (3)0.034 (3)
O60.079 (3)0.101 (4)0.109 (3)0.025 (2)0.014 (3)0.034 (3)
O4'0.258 (10)0.189 (9)0.143 (6)0.063 (7)0.107 (7)0.017 (6)
O5'0.258 (10)0.189 (9)0.143 (6)0.063 (7)0.107 (7)0.017 (6)
O6'0.258 (10)0.189 (9)0.143 (6)0.063 (7)0.107 (7)0.017 (6)
N10.069 (2)0.062 (2)0.0371 (16)0.0044 (18)0.0200 (15)0.0061 (15)
N20.0533 (16)0.054 (2)0.0300 (14)0.0030 (15)0.0140 (13)0.0019 (13)
N30.064 (2)0.093 (3)0.054 (2)0.009 (2)0.0206 (18)0.014 (2)
N40.072 (2)0.105 (4)0.055 (2)0.009 (2)0.0257 (19)0.019 (2)
N50.071 (2)0.086 (3)0.047 (2)0.012 (2)0.0214 (18)0.0107 (19)
N60.0588 (18)0.061 (2)0.0401 (16)0.0009 (16)0.0212 (15)0.0022 (15)
N70.098 (3)0.102 (5)0.050 (4)0.016 (3)0.039 (3)0.003 (3)
N7'0.098 (3)0.102 (5)0.050 (4)0.016 (3)0.039 (3)0.003 (3)
C10.076 (3)0.061 (3)0.042 (2)0.006 (2)0.027 (2)0.0037 (18)
C20.068 (2)0.052 (2)0.046 (2)0.006 (2)0.0211 (19)0.0028 (18)
C30.065 (2)0.049 (2)0.0373 (17)0.0062 (19)0.0171 (17)0.0002 (16)
C40.082 (3)0.058 (3)0.042 (2)0.005 (2)0.027 (2)0.0007 (18)
C50.085 (3)0.058 (3)0.051 (2)0.014 (2)0.030 (2)0.009 (2)
C60.072 (2)0.053 (3)0.0359 (18)0.007 (2)0.0188 (18)0.0028 (17)
C70.083 (3)0.098 (4)0.053 (2)0.020 (3)0.023 (2)0.002 (3)
C80.068 (3)0.088 (4)0.059 (2)0.015 (2)0.022 (2)0.008 (3)
C90.048 (2)0.081 (3)0.055 (2)0.002 (2)0.0171 (19)0.012 (2)
C100.057 (2)0.083 (3)0.057 (2)0.007 (2)0.022 (2)0.003 (2)
C110.057 (2)0.078 (3)0.072 (3)0.010 (2)0.018 (2)0.014 (3)
C120.068 (3)0.088 (4)0.057 (3)0.008 (3)0.023 (2)0.007 (2)
C130.077 (3)0.068 (3)0.072 (3)0.011 (2)0.027 (3)0.011 (2)
C140.080 (3)0.060 (3)0.052 (2)0.003 (2)0.028 (2)0.004 (2)
C150.050 (2)0.062 (3)0.046 (2)0.0010 (18)0.0171 (17)0.0025 (19)
C160.074 (3)0.073 (3)0.046 (2)0.016 (2)0.021 (2)0.002 (2)
C170.085 (3)0.092 (4)0.043 (2)0.015 (3)0.023 (2)0.002 (2)
C180.069 (2)0.061 (3)0.042 (2)0.002 (2)0.0229 (19)0.0016 (18)
Geometric parameters (Å, º) top
Ag1—O12.612 (3)C1—H10.9300
Ag1—N32.151 (3)C2—C31.389 (5)
Ag1—N52.158 (3)C2—H2A0.9300
Ag2—O1i2.546 (2)C3—C41.382 (6)
Ag2—N12.161 (3)C3—C61.466 (5)
Ag2—N2ii2.183 (3)C4—C51.377 (5)
O1—N21.362 (3)C4—H40.9300
O1—Ag2iii2.546 (2)C5—H50.9300
O2—N41.387 (4)C6—H60.9300
O2—H20.8400C7—C81.381 (6)
O3—N61.378 (4)C7—H70.9300
O3—H30.8400C8—C91.383 (6)
O4—N71.270 (9)C8—H80.9300
O5—N71.234 (6)C9—C101.381 (6)
O6—N71.199 (11)C9—C121.469 (6)
O4'—N7'1.239 (7)C10—C111.377 (6)
O5'—N7'1.211 (8)C10—H100.9300
O6'—N7'1.234 (8)C11—H110.9300
N1—C11.327 (5)C12—H120.9300
N1—C51.346 (5)C13—C141.362 (6)
N2—C61.264 (5)C13—H130.9300
N2—Ag2iv2.183 (3)C14—C151.374 (6)
N3—C111.324 (6)C14—H140.9300
N3—C71.342 (6)C15—C161.386 (5)
N4—C121.267 (6)C15—C181.467 (5)
N5—C171.325 (6)C16—C171.374 (6)
N5—C131.337 (6)C16—H160.9300
N6—C181.271 (5)C17—H170.9300
C1—C21.378 (5)C18—H180.9300
N3—Ag1—N5167.71 (16)N1—C5—C4122.3 (4)
N3—Ag1—O191.45 (11)N1—C5—H5118.9
N5—Ag1—O196.21 (12)C4—C5—H5118.9
N1—Ag2—N2ii162.98 (12)N2—C6—C3121.0 (3)
N1—Ag2—O1i98.67 (10)N2—C6—H6119.5
N2ii—Ag2—O1i89.75 (9)C3—C6—H6119.5
N2—O1—Ag2iii114.36 (19)N3—C7—C8123.1 (5)
N2—O1—Ag1118.84 (18)N3—C7—H7118.5
Ag2iii—O1—Ag1125.99 (9)C8—C7—H7118.5
N4—O2—H2109.5C7—C8—C9119.2 (5)
N6—O3—H3109.5C7—C8—H8120.4
C1—N1—C5117.4 (3)C9—C8—H8120.4
C1—N1—Ag2119.0 (2)C10—C9—C8117.8 (4)
C5—N1—Ag2123.4 (3)C10—C9—C12119.4 (4)
C6—N2—O1116.5 (3)C8—C9—C12122.8 (4)
C6—N2—Ag2iv126.0 (3)C11—C10—C9119.0 (4)
O1—N2—Ag2iv115.8 (2)C11—C10—H10120.5
C11—N3—C7116.9 (4)C9—C10—H10120.5
C11—N3—Ag1120.0 (3)N3—C11—C10124.0 (4)
C7—N3—Ag1123.1 (3)N3—C11—H11118.0
C12—N4—O2110.8 (4)C10—C11—H11118.0
C17—N5—C13116.7 (4)N4—C12—C9119.4 (5)
C17—N5—Ag1122.7 (3)N4—C12—H12120.3
C13—N5—Ag1120.4 (3)C9—C12—H12120.3
C18—N6—O3111.4 (3)N5—C13—C14123.0 (5)
O6—N7—O5123.3 (8)N5—C13—H13118.5
O6—N7—O4119.3 (7)C14—C13—H13118.5
O5—N7—O4117.4 (9)C13—C14—C15120.4 (4)
O5'—N7'—O6'121.9 (8)C13—C14—H14119.8
O5'—N7'—O4'122.0 (9)C15—C14—H14119.8
O6'—N7'—O4'116.2 (8)C14—C15—C16117.0 (4)
N1—C1—C2123.6 (3)C14—C15—C18119.0 (4)
N1—C1—H1118.2C16—C15—C18124.0 (4)
C2—C1—H1118.2C17—C16—C15119.0 (4)
C1—C2—C3119.4 (4)C17—C16—H16120.5
C1—C2—H2A120.3C15—C16—H16120.5
C3—C2—H2A120.3N5—C17—C16123.9 (4)
C4—C3—C2117.0 (3)N5—C17—H17118.1
C4—C3—C6119.6 (3)C16—C17—H17118.1
C2—C3—C6123.4 (4)N6—C18—C15122.2 (4)
C5—C4—C3120.4 (3)N6—C18—H18118.9
C5—C4—H4119.8C15—C18—H18118.9
C3—C4—H4119.8
N3—Ag1—O1—N28.3 (3)O1—N2—C6—C3178.3 (3)
N5—Ag1—O1—N2178.7 (2)Ag2iv—N2—C6—C313.6 (5)
N3—Ag1—O1—Ag2iii177.47 (17)C4—C3—C6—N2143.2 (4)
N5—Ag1—O1—Ag2iii12.15 (17)C2—C3—C6—N235.2 (6)
N2ii—Ag2—N1—C1153.9 (4)C11—N3—C7—C81.2 (8)
O1i—Ag2—N1—C135.0 (3)Ag1—N3—C7—C8178.5 (4)
N2ii—Ag2—N1—C531.0 (6)N3—C7—C8—C90.3 (8)
O1i—Ag2—N1—C5149.9 (3)C7—C8—C9—C100.3 (7)
Ag2iii—O1—N2—C688.6 (3)C7—C8—C9—C12177.4 (5)
Ag1—O1—N2—C681.8 (3)C8—C9—C10—C110.0 (7)
Ag2iii—O1—N2—Ag2iv77.7 (2)C12—C9—C10—C11177.8 (4)
Ag1—O1—N2—Ag2iv111.96 (18)C7—N3—C11—C101.6 (7)
N5—Ag1—N3—C1173.7 (8)Ag1—N3—C11—C10179.0 (4)
O1—Ag1—N3—C1155.0 (4)C9—C10—C11—N31.1 (7)
N5—Ag1—N3—C7109.0 (8)O2—N4—C12—C9179.7 (4)
O1—Ag1—N3—C7122.3 (4)C10—C9—C12—N4172.9 (4)
N3—Ag1—N5—C1761.9 (9)C8—C9—C12—N49.5 (7)
O1—Ag1—N5—C1766.4 (4)C17—N5—C13—C140.1 (7)
N3—Ag1—N5—C13122.9 (7)Ag1—N5—C13—C14175.6 (4)
O1—Ag1—N5—C13108.8 (4)N5—C13—C14—C150.2 (8)
C5—N1—C1—C21.4 (6)C13—C14—C15—C160.4 (7)
Ag2—N1—C1—C2174.0 (3)C13—C14—C15—C18177.8 (4)
N1—C1—C2—C30.4 (7)C14—C15—C16—C170.5 (6)
C1—C2—C3—C41.0 (6)C18—C15—C16—C17177.8 (4)
C1—C2—C3—C6177.4 (4)C13—N5—C17—C160.2 (7)
C2—C3—C4—C51.4 (6)Ag1—N5—C17—C16175.6 (4)
C6—C3—C4—C5177.1 (4)C15—C16—C17—N50.4 (8)
C1—N1—C5—C40.9 (7)O3—N6—C18—C15177.3 (3)
Ag2—N1—C5—C4174.2 (3)C14—C15—C18—N6178.2 (4)
C3—C4—C5—N10.4 (7)C16—C15—C18—N61.0 (7)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.841.812.642 (9)169
O2—H2···O40.842.212.997 (14)156
O3—H3···O1v0.841.692.527 (4)174
Symmetry code: (v) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2(C6H5N2O)(C6H6N2O)2]NO3
Mr643.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.1628 (18), 10.9926 (18), 16.315 (2)
β (°) 110.412 (4)
V3)2212.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.20 × 0.12 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.712, 0.811
No. of measured, independent and
observed [I > 2σ(I)] reflections
21226, 5047, 3355
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.07
No. of reflections5047
No. of parameters306
No. of restraints26
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.43

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag1—O12.612 (3)Ag2—O1i2.546 (2)
Ag1—N32.151 (3)Ag2—N12.161 (3)
Ag1—N52.158 (3)Ag2—N2ii2.183 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.841.812.642 (9)168.7
O2—H2···O4'0.842.212.997 (14)156.1
O3—H3···O1iii0.841.692.527 (4)174.1
Symmetry code: (iii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010–04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS
First citationGao, S. & Ng, S. W. (2012). Acta Cryst. E68, m1542.  CSD CrossRef IUCr Journals
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1540-m1541
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds