[Journal logo]

Volume 68 
Part 12 
Pages m1540-m1541  
December 2012  

Received 4 November 2012
Accepted 7 November 2012
Online 28 November 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.006 Å
Disorder in solvent or counterion
R = 0.042
wR = 0.119
Data-to-parameter ratio = 16.5
Details
Open access

Poly[[[[mu]3-(E)-N-(pyridin-4-ylmethylidene)hydroxylaminato-[kappa]3O:N:N'][[mu]2-(E)-N-(pyridin-4-ylmethylidene)hydroxylamine-[kappa]2N:N'][(E)-N-(pyridin-4-ylmethylidene-[kappa]N)hydroxylamine]disilver(I)] nitrate]

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: seikweng@um.edu.my

The title coordination polymer, {[Ag2(C6H5N2O)(C6H6N2O)2]NO3}n, features a deprotonated N-(pyridin-4-ylmethylidene)hydroxylaminate anion and two neutral N-(pyridin-4-ylmethylidene)hydroxylamine molecules in the asymmetric unit. The anion connects three AgI atoms through its O and two N-donor atoms. One neutral ligand functions in a monodentate mode; the other functions in a bridging mode, binding though its two N atoms. The coordination geometry of the two independent metal atoms is T-shaped; the manner of bridging gives rise to a layer motif parallel to (100). In the crystal, the nitrate ion is disordered over two positions in a 1:1 ratio, and is sandwiched between adjacent layers. O-H...O hydrogen bonding is present between nitrate ions and layers, and also between adjacent layers.

Related literature

For mononuclear (Nitrato-[kappa]2O,O')bis[(E)-N-(pyridin-4-ylmethylidene-[kappa]N)hydroxyamine]silver(I), see: Gao & Ng (2012[Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, m1542.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C6H5N2O)(C6H6N2O)2]NO3

  • Mr = 643.13

  • Monoclinic, P 21 /c

  • a = 13.1628 (18) Å

  • b = 10.9926 (18) Å

  • c = 16.315 (2) Å

  • [beta] = 110.412 (4)°

  • V = 2212.4 (6) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 1.82 mm-1

  • T = 293 K

  • 0.20 × 0.12 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.712, Tmax = 0.811

  • 21226 measured reflections

  • 5047 independent reflections

  • 3355 reflections with I > 2[sigma](I)

  • Rint = 0.047

Refinement
  • R[F2 > 2[sigma](F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.07

  • 5047 reflections

  • 306 parameters

  • 26 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.77 e Å-3

  • [Delta][rho]min = -0.43 e Å-3

Table 1
Selected bond lengths (Å)

Ag1-O1 2.612 (3)
Ag1-N3 2.151 (3)
Ag1-N5 2.158 (3)
Ag2-O1i 2.546 (2)
Ag2-N1 2.161 (3)
Ag2-N2ii 2.183 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O2-H2...O4 0.84 1.81 2.642 (9) 169
O2-H2...O4' 0.84 2.21 2.997 (14) 156
O3-H3...O1iii 0.84 1.69 2.527 (4) 174
Symmetry code: (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5648 ).


Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010-04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.  [CrossRef] [ChemPort]
Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, m1542.  [CrossRef] [details]
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]


Acta Cryst (2012). E68, m1540-m1541   [ doi:10.1107/S1600536812046090 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.