supplementary materials


xu5649 scheme

Acta Cryst. (2012). E68, m1493-m1494    [ doi:10.1107/S1600536812046636 ]

catena-Poly[[(4,4'-dimethyl-2,2'-bipyridine-[kappa]2N,N')cadmium]-di-[mu]-bromido]

S. A. Shirvan, S. Haydari Dezfuli, F. Khazali and A. Borsalani

Abstract top

In the crystal of the title polymeric compound, [CdBr2(C12H12N2)]n, the CdII cation is located on a twofold rotation axis and is six-coordinated in a distorted octahedral geometry formed by two N atoms from the 4,4'-dimethyl-2,2'-bipyridine ligand and by four bridging Br- anions. The bridging function of the Br- anions leads to a polymeric chain running along the c axis. Weak C-H...[pi] interactions observed between adjacent chains are effective in the stabilization of the three-dimensional packing.

Comment top

Recently, we reported the synthes and crystal structure of [CdBr2(4,4'-dmbpy)(DMSO)], (Shirvan & Haydari Dezfuli, 2012) [where 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine and DMSO is dimethyl sulfoxide]. 4,4'-Dimethyl-2,2'-bipyridine is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), cadmium (Kalateh et al., 2010) and zinc (Alizadeh et al., 2010). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains half-molecule; a twofold rotation axis passes through the Cd atom. The CdII cation is six-coordinated in a distorted octahedral geometry formed by two N atoms from the 4,4'-dimethyl-2,2'-bipyridine ligand and four bridging Br- anions. The bridging function of the Br- anions leads to a polymeric chain running along the b axis. The Cd—N and Cd—Br bond lengths and angles (Table 1) are within normal range [Cd(phen)(µ-Br)2]n, (Zhang, 2007) and [Cd(bipy)(µ-Br)2]n, (Han et al., 2006) [where phen is 1,10-phenanthroline and bipy is 2,2'-bipyridine].

Related literature top

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Bellusci et al. (2008); Han et al. (2006); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Shirvan & Haydari Dezfuli (2012); Sofetis et al. (2006); Willett et al. (2001); Yousefi et al. (2008); Zhang (2007).

Experimental top

For the preparation of the title compound, a solution of 4,4'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (10 ml) was added to a solution of CdBr2.4H2O, (0.46 g, 1.33 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in dimethylformamide. Suitable crystals were isolated after one week (yield; 0.45 g, 74.1%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
catena-Poly[[(4,4'-dimethyl-2,2'-bipyridine- κ2N,N')cadmium]-di-µ-bromido] top
Crystal data top
[CdBr2(C12H12N2)]F(000) = 864
Mr = 456.45Dx = 2.265 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3392 reflections
a = 17.979 (4) Åθ = 2.3–26.0°
b = 10.5319 (18) ŵ = 7.58 mm1
c = 7.4496 (16) ÅT = 298 K
β = 108.403 (17)°Prism, colorless
V = 1338.5 (5) Å30.25 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1313 independent reflections
Radiation source: fine-focus sealed tube909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2222
Tmin = 0.188, Tmax = 0.246k = 1212
3392 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0098P)2 + 54.7076P]
where P = (Fo2 + 2Fc2)/3
1313 reflections(Δ/σ)max = 0.022
78 parametersΔρmax = 1.20 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[CdBr2(C12H12N2)]V = 1338.5 (5) Å3
Mr = 456.45Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.979 (4) ŵ = 7.58 mm1
b = 10.5319 (18) ÅT = 298 K
c = 7.4496 (16) Å0.25 × 0.21 × 0.20 mm
β = 108.403 (17)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
909 reflections with I > 2σ(I)
Tmin = 0.188, Tmax = 0.246Rint = 0.095
3392 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.0098P)2 + 54.7076P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.155Δρmax = 1.20 e Å3
S = 1.24Δρmin = 0.88 e Å3
1313 reflectionsAbsolute structure: ?
78 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
H-atom parameters constrained
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.92501 (14)0.25000.0312 (4)
Br10.09337 (9)1.08683 (16)0.4997 (2)0.0439 (5)
N10.0688 (6)0.7414 (11)0.1090 (15)0.030 (3)
C60.0397 (7)0.6266 (12)0.1779 (18)0.023 (3)
C50.0804 (7)0.5157 (13)0.111 (2)0.030 (3)
H50.05850.43760.15740.036*
C10.1384 (8)0.7427 (15)0.025 (2)0.042 (4)
H10.15790.82090.07670.050*
C30.1535 (8)0.5209 (14)0.025 (2)0.031 (3)
C40.2002 (8)0.4012 (14)0.094 (2)0.040 (4)
H4A0.20980.35860.01010.048*
H4B0.17120.34620.15050.048*
H4C0.24930.42290.18690.048*
C20.1825 (8)0.6396 (14)0.091 (2)0.036 (3)
H20.23180.64780.18060.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0363 (8)0.0203 (7)0.0304 (9)0.0000.0011 (6)0.000
Br10.0434 (10)0.0394 (9)0.0520 (12)0.0169 (7)0.0195 (8)0.0153 (8)
N10.032 (6)0.027 (5)0.022 (6)0.009 (5)0.005 (4)0.006 (5)
C60.018 (6)0.024 (6)0.030 (7)0.002 (5)0.009 (5)0.002 (6)
C50.019 (6)0.031 (7)0.045 (9)0.002 (5)0.015 (6)0.002 (6)
C10.034 (8)0.030 (7)0.046 (9)0.003 (6)0.008 (7)0.010 (7)
C30.027 (7)0.042 (8)0.023 (7)0.001 (6)0.005 (5)0.010 (6)
C40.037 (8)0.044 (9)0.035 (8)0.012 (7)0.006 (6)0.003 (7)
C20.026 (7)0.042 (8)0.031 (8)0.002 (6)0.005 (6)0.004 (7)
Geometric parameters (Å, º) top
Cd1—N1i2.357 (10)C5—C31.383 (18)
Cd1—N12.357 (10)C5—H50.9300
Cd1—Br1i2.6852 (17)C1—C21.34 (2)
Cd1—Br12.6852 (17)C1—H10.9300
Cd1—Br1ii2.8789 (16)C3—C21.39 (2)
Cd1—Br1iii2.8790 (16)C3—C41.513 (19)
Br1—Cd1iii2.8789 (16)C4—H4A0.9600
N1—C11.331 (16)C4—H4B0.9600
N1—C61.353 (17)C4—H4C0.9600
C6—C51.384 (18)C2—H20.9300
C6—C6i1.49 (2)
N1i—Cd1—N169.7 (5)N1—C6—C6i116.2 (7)
N1i—Cd1—Br1i162.8 (3)C5—C6—C6i122.4 (7)
N1—Cd1—Br1i95.0 (3)C3—C5—C6120.1 (13)
N1i—Cd1—Br195.0 (3)C3—C5—H5119.9
N1—Cd1—Br1162.8 (3)C6—C5—H5119.9
Br1i—Cd1—Br1101.21 (9)N1—C1—C2125.0 (14)
N1i—Cd1—Br1ii85.5 (3)N1—C1—H1117.5
N1—Cd1—Br1ii90.4 (3)C2—C1—H1117.5
Br1i—Cd1—Br1ii86.77 (5)C5—C3—C2117.4 (13)
Br1—Cd1—Br1ii96.39 (5)C5—C3—C4121.0 (13)
N1i—Cd1—Br1iii90.4 (3)C2—C3—C4121.6 (12)
N1—Cd1—Br1iii85.5 (3)C3—C4—H4A109.5
Br1i—Cd1—Br1iii96.39 (5)C3—C4—H4B109.5
Br1—Cd1—Br1iii86.77 (5)H4A—C4—H4B109.5
Br1ii—Cd1—Br1iii175.03 (9)C3—C4—H4C109.5
Cd1—Br1—Cd1iii93.23 (5)H4A—C4—H4C109.5
C1—N1—C6116.9 (12)H4B—C4—H4C109.5
C1—N1—Cd1124.3 (10)C1—C2—C3119.1 (12)
C6—N1—Cd1118.6 (8)C1—C2—H2120.4
N1—C6—C5121.3 (11)C3—C2—H2120.4
N1i—Cd1—Br1—Cd1iii90.1 (3)Br1iii—Cd1—N1—C689.3 (10)
N1—Cd1—Br1—Cd1iii63.5 (10)C1—N1—C6—C50 (2)
Br1i—Cd1—Br1—Cd1iii95.88 (5)Cd1—N1—C6—C5175.0 (10)
Br1ii—Cd1—Br1—Cd1iii176.16 (7)C1—N1—C6—C6i177.6 (15)
Br1iii—Cd1—Br1—Cd1iii0.0Cd1—N1—C6—C6i7.7 (19)
N1i—Cd1—N1—C1177.1 (15)N1—C6—C5—C32 (2)
Br1i—Cd1—N1—C111.0 (12)C6i—C6—C5—C3179.3 (14)
Br1—Cd1—N1—C1148.7 (10)C6—N1—C1—C22 (2)
Br1ii—Cd1—N1—C197.8 (12)Cd1—N1—C1—C2171.9 (13)
Br1iii—Cd1—N1—C185.0 (12)C6—C5—C3—C21 (2)
N1i—Cd1—N1—C62.9 (7)C6—C5—C3—C4177.8 (13)
Br1i—Cd1—N1—C6174.7 (9)N1—C1—C2—C33 (3)
Br1—Cd1—N1—C625.6 (17)C5—C3—C2—C11 (2)
Br1ii—Cd1—N1—C687.9 (10)C4—C3—C2—C1179.7 (15)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+2, z1/2; (iii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1-pyridine ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cgiv0.962.843.575 (16)135
Symmetry code: (iv) x, y+1, z1/2.
Selected bond lengths (Å) top
Cd1—N12.357 (10)Cd1—Br1i2.8789 (16)
Cd1—Br12.6852 (17)
Symmetry code: (i) x, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1-pyridine ring.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cgii0.962.83483.575 (16)135
Symmetry code: (ii) x, y+1, z1/2.
Acknowledgements top

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

references
References top

Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.

Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.

Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.

Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114–3122.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Han, J., Fang, J., Dong, Y. & Chang, H. (2006). Acta Cryst. E62, m183–m184.

Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.

Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.

Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1006–m1007.

Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.

Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.

Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.

Zhang, B.-S. (2007). Acta Cryst. E63, m1562.