supplementary materials


xu5651 scheme

Acta Cryst. (2012). E68, m1510-m1511    [ doi:10.1107/S1600536812047046 ]

Bis([mu]-4-methylbenzoato)-[kappa]3O,O':O;[kappa]3O:O,O'-bis[aqua(4-methylbenzoato-[kappa]2O,O')(nicotinamide-[kappa]N1)cadmium]

Ö. Dincel, B. Tercan, E. Çimen, H. Necefoglu and T. Hökelek

Abstract top

In the dinuclear centrosymmetric title compound, [Cd2(C8H7O2)4(C6H6N2O)2(H2O)2], the CdII ion is chelated by two carboxylate groups from 4-methylbenzoate anions, and is further coordinated by one nicotinamide and one water molecule; a carboxylate O atom from an adjacent 4-methylbenzoate anion bridges to the CdII ion, completing the irregular coordination sphere of the seven ligand atoms. In the crystal, intermolecular O-H...O, N-H...O and weak C-H...O hydrogen bonds link the molecules into a three-dimensional network. The methylbenzene moiety of one bridging 4-methylbenzoate anion is disordered over two orientations of equal occupancy.

Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), consists of dimeric units located around a crystallographic symmetry centre and made up of two Cd cations, four 4-methylbenzoate (PMB) anions, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Each Cd(II) unit is chelated by the carboxylate O atoms of the two PMB anions, and the two monomeric units are bridged through the two oxygen atoms of the two carboxylate groups about an inversion center. The coordination number of each CdII atom is seven. The Cd1···Cd1i distance is 3.7796 (2) Å and O1-Cd1-O1i angle is 76.19 (4)° (symmetry code: (i) -x, -y, 1 - z).

The average Cd-O bond length (Table 1) is 2.4080 (13) Å, and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by -0.5904 (1) and 0.3109 (1) Å, respectively. In (I), the O1-Cd1-O2 and O3-Cd1-O4 angles are 52.85 (4) and 55.62 (4) °, respectively. The corresponding O-M-O (where M is a metal) angles are 53.71 (4)° and 54.59 (4)° in [Cd2(HB)4(INA)2].4H2O (Zaman et al., 2012), 55.71 (5)° and 117.52 (4)° in [Cd2(MAB)4(NA)2(H2O)2] (Hökelek et al., 2010b), 55.96 (4)° and 53.78 (4)° in [Cd2(DMAB)4(NA)2(H2O)2] (Hökelek et al., 2010a), 52.91 (4)° and 53.96 (4)° in [Cd(FB)2(INA)2(H2O)].H2O (Hökelek et al., 2009a), 60.70 (4)° in [Co(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009b), 58.45 (9)° in [Mn(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009c), 60.03 (6)° in [Zn(MAB)2(INA)2].H2O (Hökelek et al., 2009d), 58.3 (3)° in [Zn2(DENA)2(HB)4].2H2O (Hökelek & Necefoğlu, 1996) [where NA, INA, DENA, HB, FB, MAB and DMAB are nicotinamide, isonicotinamide, N,N-diethylnicotinamide, 3- or 4-hydroxybenzoate, 4-formylbenzoate, 4-methylaminobenzoate and 4-dimethylaminobenzoate, respectively] and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

The dihedral angle between the planar carboxylate group (O3/C9/O4) and the adjacent benzene ring B (C10-C15) is 7.21 (19) °, while those between rings B, C (N1/C17-C21), D (Cd1/O1/O2/C1) and E (Cd1/O3/O4/C9) are B/C = 59.55 (7) and D/E = 63.01 (5)°.

In the crystal structure, intermolecular O-H···O, N-H···O and C-H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure.

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d, 2010a,b); Zaman et al. (2012).

Experimental top

The title compound was prepared by the reaction of 3CdSO4.8H2O (1.285 g, 5 mmol) in H2O (50 ml) and NA (1.220 g, 10 mmol) in H2O (20 ml) with sodium 4-methylbenzoate (1.580 g, 10 mmol) in H2O (400 ml). The mixture was filtered and set aside to crystallize at ambient temperature for three weeks, giving colorless single crystals.

Refinement top

Atoms H51 and H52 (for H2O) were located in a difference Fourier map and their positions were kept fixed during the refinement process. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH2), C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl and water H atoms and x = 1.2 for NH2 and aromatic H atoms. In the benzene ring A (C2-C7), the C2, C3, C4, C5 C6, C7 and the attached H3, H4, H6, H7 atoms, respectively, together with the C8, H81, H82 and H83 atoms of the methyl group attached at C5 are disordered over two orientations. During the refinement process the disordered C2A, C3A, H3A, C4A, H4A, C5A, C6A, H6A, C7A, H7A, C8A, H8A1, H8A2, H8A3 and C2B, C3B, H3B, C4B, H4B, C5B, C6B, H6B, C7B, H7B, C8B, H8B1, H8B2, H8B3 atoms were refined with occupancies ratios of 0.50:0.50.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Primed atoms are generated by the symmetry operators: (') 2 - x, 2 - y, 1 - z.
Bis(µ-4-methylbenzoato)-κ3O,O':O; κ3O:O,O'-bis[aqua(4-methylbenzoato- κ2O,O')(nicotinamide-κN1)cadmium] top
Crystal data top
[Cd2(C8H7O2)4(C6H6N2O)2(H2O)2]Z = 1
Mr = 1045.65F(000) = 528
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5935 (2) ÅCell parameters from 9926 reflections
b = 10.3084 (2) Åθ = 2.3–28.5°
c = 12.6606 (3) ŵ = 1.07 mm1
α = 68.326 (3)°T = 100 K
β = 74.999 (3)°Block, colorless
γ = 66.916 (2)°0.36 × 0.31 × 0.28 mm
V = 1060.81 (5) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4169 independent reflections
Radiation source: fine-focus sealed tube4085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.687, Tmax = 0.741k = 1212
16908 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0193P)2 + 1.1679P]
where P = (Fo2 + 2Fc2)/3
4169 reflections(Δ/σ)max = 0.002
256 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cd2(C8H7O2)4(C6H6N2O)2(H2O)2]γ = 66.916 (2)°
Mr = 1045.65V = 1060.81 (5) Å3
Triclinic, P1Z = 1
a = 9.5935 (2) ÅMo Kα radiation
b = 10.3084 (2) ŵ = 1.07 mm1
c = 12.6606 (3) ÅT = 100 K
α = 68.326 (3)°0.36 × 0.31 × 0.28 mm
β = 74.999 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4169 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4085 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.741Rint = 0.021
16908 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048Δρmax = 1.08 e Å3
S = 1.05Δρmin = 0.72 e Å3
4169 reflectionsAbsolute structure: ?
256 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.817156 (14)0.963852 (13)0.512013 (10)0.01282 (5)
O10.96132 (15)0.68775 (14)0.62253 (11)0.0203 (3)
O21.01690 (14)0.88132 (13)0.61152 (10)0.0160 (3)
O30.66922 (14)1.01399 (14)0.36876 (11)0.0172 (3)
O40.90596 (15)0.86161 (14)0.36017 (11)0.0181 (3)
O50.64150 (14)0.86318 (13)0.64128 (11)0.0169 (3)
H5A0.54400.89870.63760.025*
H5B0.65770.77560.64440.025*
O60.63943 (16)1.59642 (15)0.65749 (14)0.0291 (3)
N10.67632 (17)1.17891 (16)0.56260 (13)0.0151 (3)
N20.87749 (18)1.44037 (18)0.62850 (15)0.0220 (3)
H2A0.91871.49750.63450.026*
H2B0.93421.35780.61570.026*
C11.02645 (19)0.74445 (19)0.65768 (15)0.0140 (3)
C2A1.1134 (3)0.6536 (3)0.7611 (2)0.0220 (5)0.50
C3A1.2108 (4)0.7037 (3)0.7882 (3)0.0220 (5)0.50
H3A1.23300.78780.73840.026*0.50
C4A1.2749 (3)0.6283 (4)0.8898 (3)0.0220 (5)0.50
H4A1.34000.66180.90790.026*0.50
C5A1.2417 (3)0.5027 (3)0.9642 (2)0.0220 (5)0.50
C6A1.1444 (4)0.4525 (3)0.9370 (2)0.0220 (5)0.50
H6A1.12220.36850.98680.026*0.50
C7A1.0803 (3)0.5280 (3)0.8355 (2)0.0220 (5)0.50
H7A1.01510.49450.81730.026*0.50
C8A1.305 (3)0.422 (4)1.079 (3)0.042 (3)0.50
H8A11.37200.46701.08440.064*0.50
H8A21.36080.31991.08300.064*0.50
H8A31.22210.42721.14030.064*0.50
C2B1.1134 (3)0.6556 (3)0.7575 (2)0.0196 (5)0.50
C3B1.1715 (4)0.7249 (2)0.8029 (3)0.0196 (5)0.50
H3B1.15940.82490.76910.024*0.50
C4B1.2478 (3)0.6447 (3)0.8986 (3)0.0196 (5)0.50
H4B1.28670.69110.92890.024*0.50
C5B1.2659 (3)0.4953 (3)0.9490 (2)0.0196 (5)0.50
C6B1.2078 (4)0.4260 (2)0.9036 (2)0.0196 (5)0.50
H6B1.21990.32600.93730.024*0.50
C7B1.1315 (3)0.5061 (3)0.8079 (2)0.0196 (5)0.50
H7B1.09270.45970.77760.024*0.50
C8B1.340 (3)0.414 (4)1.059 (3)0.042 (3)0.50
H8B11.28360.35221.11320.064*0.50
H8B21.34030.48421.09190.064*0.50
H8B31.44360.35321.04220.064*0.50
C90.7838 (2)0.93699 (19)0.31593 (15)0.0147 (3)
C100.7771 (2)0.9423 (2)0.19762 (15)0.0167 (4)
C110.6466 (2)1.0303 (2)0.14489 (17)0.0236 (4)
H110.55961.08090.18540.028*
C120.6455 (3)1.0431 (2)0.03214 (18)0.0266 (4)
H120.55741.10240.00220.032*
C130.7736 (3)0.9690 (2)0.03055 (16)0.0244 (4)
C140.9032 (3)0.8808 (2)0.02313 (18)0.0269 (4)
H140.98980.82980.01720.032*
C150.9059 (2)0.8675 (2)0.13545 (17)0.0222 (4)
H150.99410.80830.16960.027*
C160.7713 (3)0.9837 (3)0.15339 (18)0.0347 (5)
H16A0.77360.89180.15770.052*
H16B0.85891.00800.20060.052*
H16C0.67981.06050.17990.052*
C170.7412 (2)1.25977 (19)0.58365 (15)0.0149 (3)
H170.84711.23440.56970.018*
C180.6572 (2)1.37934 (19)0.62518 (16)0.0168 (4)
C190.4990 (2)1.4139 (2)0.64957 (19)0.0250 (4)
H190.43951.49150.67960.030*
C200.4319 (2)1.3308 (2)0.6283 (2)0.0277 (5)
H200.32651.35140.64430.033*
C210.5235 (2)1.2166 (2)0.58314 (17)0.0203 (4)
H210.47721.16370.56630.024*
C220.7261 (2)1.4797 (2)0.63911 (16)0.0186 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01161 (7)0.01484 (7)0.01396 (7)0.00428 (5)0.00216 (5)0.00624 (5)
O10.0207 (7)0.0209 (7)0.0224 (7)0.0098 (5)0.0069 (5)0.0040 (5)
O20.0167 (6)0.0148 (6)0.0150 (6)0.0054 (5)0.0026 (5)0.0022 (5)
O30.0158 (6)0.0205 (6)0.0163 (6)0.0058 (5)0.0022 (5)0.0070 (5)
O40.0169 (6)0.0194 (6)0.0190 (6)0.0036 (5)0.0053 (5)0.0075 (5)
O50.0152 (6)0.0131 (6)0.0217 (7)0.0044 (5)0.0018 (5)0.0052 (5)
O60.0198 (7)0.0197 (7)0.0533 (10)0.0052 (6)0.0021 (7)0.0203 (7)
N10.0155 (7)0.0142 (7)0.0155 (7)0.0054 (6)0.0033 (6)0.0030 (6)
N20.0172 (8)0.0180 (8)0.0365 (10)0.0057 (6)0.0044 (7)0.0142 (7)
C10.0095 (8)0.0157 (8)0.0147 (8)0.0035 (7)0.0021 (6)0.0054 (7)
C2A0.0206 (9)0.0223 (10)0.0217 (10)0.0072 (7)0.0045 (7)0.0038 (8)
C3A0.0206 (9)0.0223 (10)0.0217 (10)0.0072 (7)0.0045 (7)0.0038 (8)
C4A0.0206 (9)0.0223 (10)0.0217 (10)0.0072 (7)0.0045 (7)0.0038 (8)
C5A0.0206 (9)0.0223 (10)0.0217 (10)0.0072 (7)0.0045 (7)0.0038 (8)
C6A0.0206 (9)0.0223 (10)0.0217 (10)0.0072 (7)0.0045 (7)0.0038 (8)
C7A0.0206 (9)0.0223 (10)0.0217 (10)0.0072 (7)0.0045 (7)0.0038 (8)
C8A0.045 (9)0.042 (4)0.036 (8)0.020 (7)0.026 (6)0.012 (5)
C2B0.0151 (8)0.0173 (10)0.0238 (10)0.0035 (6)0.0062 (7)0.0027 (8)
C3B0.0151 (8)0.0173 (10)0.0238 (10)0.0035 (6)0.0062 (7)0.0027 (8)
C4B0.0151 (8)0.0173 (10)0.0238 (10)0.0035 (6)0.0062 (7)0.0027 (8)
C5B0.0151 (8)0.0173 (10)0.0238 (10)0.0035 (6)0.0062 (7)0.0027 (8)
C6B0.0151 (8)0.0173 (10)0.0238 (10)0.0035 (6)0.0062 (7)0.0027 (8)
C7B0.0151 (8)0.0173 (10)0.0238 (10)0.0035 (6)0.0062 (7)0.0027 (8)
C8B0.045 (9)0.042 (4)0.036 (8)0.020 (7)0.026 (6)0.012 (5)
C90.0188 (9)0.0142 (8)0.0145 (8)0.0106 (7)0.0021 (7)0.0023 (7)
C100.0223 (9)0.0166 (8)0.0148 (9)0.0112 (7)0.0028 (7)0.0033 (7)
C110.0226 (10)0.0288 (10)0.0200 (10)0.0069 (8)0.0040 (8)0.0090 (8)
C120.0306 (11)0.0297 (11)0.0206 (10)0.0097 (9)0.0094 (8)0.0051 (8)
C130.0385 (12)0.0239 (10)0.0152 (9)0.0165 (9)0.0040 (8)0.0039 (8)
C140.0320 (11)0.0288 (10)0.0208 (10)0.0107 (9)0.0012 (8)0.0109 (8)
C150.0243 (10)0.0229 (9)0.0201 (10)0.0084 (8)0.0034 (8)0.0063 (8)
C160.0517 (15)0.0386 (12)0.0174 (10)0.0179 (11)0.0054 (10)0.0086 (9)
C170.0149 (9)0.0154 (8)0.0143 (8)0.0061 (7)0.0021 (7)0.0029 (7)
C180.0159 (9)0.0137 (8)0.0208 (9)0.0059 (7)0.0024 (7)0.0042 (7)
C190.0169 (10)0.0172 (9)0.0415 (12)0.0037 (8)0.0008 (9)0.0137 (9)
C200.0129 (9)0.0203 (9)0.0503 (14)0.0045 (8)0.0028 (9)0.0131 (9)
C210.0172 (9)0.0156 (8)0.0298 (10)0.0073 (7)0.0056 (8)0.0050 (8)
C220.0199 (9)0.0153 (8)0.0214 (9)0.0063 (7)0.0028 (7)0.0060 (7)
Geometric parameters (Å, º) top
Cd1—O12.6353 (13)C2B—C7B1.3900
Cd1—O22.2722 (13)C3B—C4B1.3900
Cd1—O2i2.5273 (12)C3B—H3B0.9300
Cd1—O32.3739 (13)C4B—C5B1.3900
Cd1—O42.3403 (13)C4B—H4B0.9300
Cd1—O52.2987 (13)C5B—C6B1.3900
Cd1—N12.3243 (15)C5B—C8B1.53 (3)
Cd1—C92.7076 (17)C6B—C7B1.3900
N1—C171.345 (2)C6B—H6B0.9300
N1—C211.341 (2)C7B—H7B0.9300
N2—C221.330 (2)C8B—H8B10.9600
N2—H2A0.8600C8B—H8B20.9600
N2—H2B0.8600C8B—H8B30.9600
O1—C11.246 (2)C9—C101.496 (2)
O2—C11.288 (2)C10—C111.390 (3)
O2—Cd1i2.5273 (12)C10—C151.392 (3)
O3—C91.270 (2)C11—C121.387 (3)
O4—C91.263 (2)C11—H110.9300
O5—H5A0.8678C12—C131.389 (3)
O5—H5B0.8411C12—H120.9300
O6—C221.231 (2)C13—C141.389 (3)
C1—C2B1.491 (3)C13—C161.511 (3)
C1—C2A1.528 (3)C14—C151.383 (3)
C2A—C3A1.3900C14—H140.9300
C2A—C7A1.3900C15—H150.9300
C3A—C4A1.3900C16—H16A0.9600
C3A—H3A0.9300C16—H16B0.9600
C4A—C5A1.3900C16—H16C0.9600
C4A—H4A0.9300C17—C181.388 (2)
C5A—C6A1.3900C17—H170.9300
C5A—C8A1.53 (3)C18—C191.393 (3)
C6A—C7A1.3900C18—C221.506 (2)
C6A—H6A0.9300C19—C201.383 (3)
C7A—H7A0.9300C19—H190.9300
C8A—H8A10.9600C20—C211.382 (3)
C8A—H8A20.9600C20—H200.9300
C8A—H8A30.9600C21—H210.9300
C2B—C3B1.3900
O1—Cd1—C9101.80 (5)C4B—C3B—C2B120.0
O2—Cd1—O152.85 (4)C4B—C3B—H3B120.0
O2i—Cd1—O1116.34 (4)C2B—C3B—H3B120.0
O2—Cd1—O2i76.22 (5)C5B—C4B—C3B120.0
O2—Cd1—O3162.16 (4)C5B—C4B—H4B120.0
O2—Cd1—O4106.73 (4)C3B—C4B—H4B120.0
O2—Cd1—O5103.70 (4)C4B—C5B—C6B120.0
O2—Cd1—N199.20 (5)C4B—C5B—C8B118.4 (14)
O2—Cd1—C9134.23 (5)C6B—C5B—C8B121.5 (14)
O2i—Cd1—C986.97 (5)C7B—C6B—C5B120.0
O3—Cd1—O1119.67 (4)C7B—C6B—H6B120.0
O3—Cd1—O2i96.74 (4)C5B—C6B—H6B120.0
O3—Cd1—C927.97 (5)C6B—C7B—C2B120.0
O4—Cd1—O180.08 (4)C6B—C7B—H7B120.0
O4—Cd1—O2i81.30 (4)C2B—C7B—H7B120.0
O4—Cd1—O355.62 (4)C5B—C8B—H8B1109.5
O4—Cd1—C927.78 (5)C5B—C8B—H8B2109.5
O5—Cd1—O171.23 (4)H8B1—C8B—H8B2109.5
O5—Cd1—O2i167.88 (4)C5B—C8B—H8B3109.5
O5—Cd1—O386.63 (4)H8B1—C8B—H8B3109.5
O5—Cd1—O4109.99 (5)H8B2—C8B—H8B3109.5
O5—Cd1—N186.22 (5)O4—C9—O3120.53 (16)
O5—Cd1—C9101.04 (5)O4—C9—C10119.65 (16)
N1—Cd1—O1135.38 (5)O3—C9—C10119.74 (16)
N1—Cd1—O2i81.86 (5)O4—C9—Cd159.71 (9)
N1—Cd1—O395.92 (5)O3—C9—Cd161.25 (9)
N1—Cd1—O4144.53 (5)C10—C9—Cd1170.35 (12)
N1—Cd1—C9120.41 (5)C11—C10—C15118.92 (17)
C1—O1—Cd184.10 (10)C11—C10—C9120.69 (17)
Cd1—O2—Cd1i103.78 (5)C15—C10—C9120.21 (17)
C1—O2—Cd199.86 (11)C12—C11—C10120.23 (19)
C1—O2—Cd1i139.66 (11)C12—C11—H11119.9
C9—O3—Cd190.78 (10)C10—C11—H11119.9
C9—O4—Cd192.51 (10)C11—C12—C13121.2 (2)
Cd1—O5—H5A124.2C11—C12—H12119.4
Cd1—O5—H5B113.2C13—C12—H12119.4
H5A—O5—H5B99.0C14—C13—C12118.05 (18)
C17—N1—Cd1123.00 (12)C14—C13—C16121.1 (2)
C21—N1—Cd1118.75 (12)C12—C13—C16120.8 (2)
C21—N1—C17117.90 (16)C15—C14—C13121.3 (2)
C22—N2—H2A120.0C15—C14—H14119.4
C22—N2—H2B120.0C13—C14—H14119.4
H2A—N2—H2B120.0C14—C15—C10120.27 (19)
O1—C1—O2121.27 (16)C14—C15—H15119.9
O1—C1—C2B120.30 (18)C10—C15—H15119.9
O2—C1—C2B118.40 (18)C13—C16—H16A109.5
O1—C1—C2A120.12 (19)C13—C16—H16B109.5
O2—C1—C2A118.55 (18)H16A—C16—H16B109.5
C3A—C2A—C7A120.0C13—C16—H16C109.5
C3A—C2A—C1121.0 (2)H16A—C16—H16C109.5
C7A—C2A—C1118.6 (2)H16B—C16—H16C109.5
C4A—C3A—C2A120.0N1—C17—C18122.98 (17)
C4A—C3A—H3A120.0N1—C17—H17118.5
C2A—C3A—H3A120.0C18—C17—H17118.5
C3A—C4A—C5A120.0C17—C18—C19118.31 (17)
C3A—C4A—H4A120.0C17—C18—C22123.76 (16)
C5A—C4A—H4A120.0C19—C18—C22117.83 (16)
C6A—C5A—C4A120.0C20—C19—C18118.87 (18)
C6A—C5A—C8A118.9 (13)C20—C19—H19120.6
C4A—C5A—C8A121.0 (13)C18—C19—H19120.6
C7A—C6A—C5A120.0C21—C20—C19119.12 (18)
C7A—C6A—H6A120.0C21—C20—H20120.4
C5A—C6A—H6A120.0C19—C20—H20120.4
C6A—C7A—C2A120.0N1—C21—C20122.76 (17)
C6A—C7A—H7A120.0N1—C21—H21118.6
C2A—C7A—H7A120.0C20—C21—H21118.6
C3B—C2B—C7B120.0O6—C22—N2122.79 (17)
C3B—C2B—C1119.3 (2)O6—C22—C18118.32 (17)
C7B—C2B—C1120.6 (2)N2—C22—C18118.87 (16)
O2—Cd1—O1—C17.87 (10)Cd1—O2—C1—C2B162.66 (17)
O2i—Cd1—O1—C152.76 (11)Cd1i—O2—C1—C2B72.0 (2)
O3—Cd1—O1—C1168.40 (10)Cd1—O3—C9—O47.53 (16)
O4—Cd1—O1—C1127.81 (10)Cd1—O3—C9—C10168.99 (14)
O5—Cd1—O1—C1116.97 (11)Cd1—O4—C9—O37.64 (16)
N1—Cd1—O1—C153.31 (12)Cd1—O4—C9—C10168.88 (13)
C9—Cd1—O1—C1145.24 (10)Cd1—N1—C17—C18173.17 (13)
O1—Cd1—O2—Cd1i139.37 (7)C21—N1—C17—C180.1 (3)
O1—Cd1—O2—C17.69 (9)Cd1—N1—C21—C20171.10 (16)
O2i—Cd1—O2—Cd1i0.0C17—N1—C21—C202.3 (3)
O2i—Cd1—O2—C1147.05 (12)O1—C1—C2A—C3A167.42 (17)
O3—Cd1—O2—Cd1i68.42 (15)O1—C1—C2A—C7A19.9 (3)
O3—Cd1—O2—C178.64 (18)O2—C1—C2A—C3A15.5 (3)
O4—Cd1—O2—Cd1i76.33 (5)O2—C1—C2A—C7A157.16 (18)
O4—Cd1—O2—C170.73 (11)C2B—C1—C2A—C3A64 (16)
O5—Cd1—O2—Cd1i167.52 (4)C2B—C1—C2A—C7A124 (16)
O5—Cd1—O2—C145.42 (11)C1—C2A—C3A—C4A172.5 (3)
N1—Cd1—O2—Cd1i79.20 (5)C7A—C2A—C3A—C4A0.0
N1—Cd1—O2—C1133.75 (10)C1—C2A—C7A—C6A172.7 (3)
C9—Cd1—O2—Cd1i71.66 (7)C3A—C2A—C7A—C6A0.0
C9—Cd1—O2—C175.39 (12)C2A—C3A—C4A—C5A0.0
O1—Cd1—O3—C955.17 (11)C3A—C4A—C5A—C6A0.0
O2—Cd1—O3—C95.0 (2)C3A—C4A—C5A—C8A177.3 (11)
O2i—Cd1—O3—C970.38 (10)C4A—C5A—C6A—C7A0.0
O4—Cd1—O3—C94.23 (9)C8A—C5A—C6A—C7A177.4 (11)
O5—Cd1—O3—C9121.31 (10)C5A—C6A—C7A—C2A0.0
N1—Cd1—O3—C9152.85 (10)O1—C1—C2B—C3B173.29 (17)
O1—Cd1—O4—C9141.03 (10)O1—C1—C2B—C7B4.2 (3)
O2—Cd1—O4—C9172.81 (10)O2—C1—C2B—C3B4.7 (3)
O2i—Cd1—O4—C9100.13 (10)O2—C1—C2B—C7B177.77 (17)
O3—Cd1—O4—C94.26 (9)C2A—C1—C2B—C3B97 (16)
O5—Cd1—O4—C975.32 (10)C2A—C1—C2B—C7B81 (16)
N1—Cd1—O4—C937.61 (14)C1—C2B—C3B—C4B177.6 (2)
O1—Cd1—N1—C1777.16 (15)C7B—C2B—C3B—C4B0.0
O1—Cd1—N1—C2195.89 (14)C1—C2B—C7B—C6B177.5 (3)
O2—Cd1—N1—C1732.13 (14)C3B—C2B—C7B—C6B0.0
O2i—Cd1—N1—C1742.39 (13)C2B—C3B—C4B—C5B0.0
O2—Cd1—N1—C21140.92 (13)C3B—C4B—C5B—C6B0.0
O2i—Cd1—N1—C21144.57 (14)C3B—C4B—C5B—C8B175.6 (9)
O3—Cd1—N1—C17138.37 (13)C4B—C5B—C6B—C7B0.0
O3—Cd1—N1—C2148.58 (14)C8B—C5B—C6B—C7B175.5 (9)
O4—Cd1—N1—C17104.74 (14)C5B—C6B—C7B—C2B0.0
O4—Cd1—N1—C2182.21 (16)O3—C9—C10—C110.2 (3)
O5—Cd1—N1—C17135.41 (14)O3—C9—C10—C15174.98 (16)
O5—Cd1—N1—C2137.63 (14)O4—C9—C10—C11176.73 (17)
C9—Cd1—N1—C17124.00 (13)O4—C9—C10—C151.6 (3)
C9—Cd1—N1—C2162.95 (15)C9—C10—C11—C12175.15 (18)
O1—Cd1—C9—O3133.23 (9)C15—C10—C11—C120.1 (3)
O1—Cd1—C9—O439.26 (10)C9—C10—C15—C14175.38 (17)
O2—Cd1—C9—O3177.88 (8)C11—C10—C15—C140.1 (3)
O2i—Cd1—C9—O3110.49 (10)C10—C11—C12—C130.0 (3)
O2—Cd1—C9—O49.63 (13)C11—C12—C13—C140.2 (3)
O2i—Cd1—C9—O477.02 (10)C11—C12—C13—C16180.00 (19)
O3—Cd1—C9—O4172.49 (16)C12—C13—C14—C150.4 (3)
O4—Cd1—C9—O3172.49 (16)C16—C13—C14—C15179.8 (2)
O5—Cd1—C9—O360.34 (10)C13—C14—C15—C100.4 (3)
O5—Cd1—C9—O4112.15 (10)N1—C17—C18—C192.1 (3)
N1—Cd1—C9—O331.76 (11)N1—C17—C18—C22174.19 (16)
N1—Cd1—C9—O4155.75 (9)C17—C18—C19—C201.9 (3)
Cd1—O1—C1—O213.02 (15)C22—C18—C19—C20174.68 (19)
Cd1—O1—C1—C2A164.00 (18)C17—C18—C22—O6167.60 (18)
Cd1—O1—C1—C2B164.90 (18)C17—C18—C22—N210.9 (3)
Cd1—O2—C1—O115.30 (18)C19—C18—C22—O68.8 (3)
Cd1i—O2—C1—O1110.02 (19)C19—C18—C22—N2172.76 (19)
Cd1—O2—C1—C2A161.77 (16)C18—C19—C20—C210.3 (3)
Cd1i—O2—C1—C2A72.9 (2)C19—C20—C21—N12.5 (3)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.862.102.931 (2)162
N2—H2B···O4i0.862.142.963 (2)161
O5—H5A···O3iii0.871.892.761 (2)177
O5—H5B···O6iv0.841.872.689 (2)165
C3A—H3A···O3i0.932.393.303 (3)169
C11—H11···O5iii0.932.603.481 (2)159
C17—H17···O4i0.932.453.286 (2)150
C21—H21···O3iii0.932.513.352 (3)150
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y1, z.
Selected bond lengths (Å) top
Cd1—O12.6353 (13)Cd1—O42.3403 (13)
Cd1—O22.2722 (13)Cd1—O52.2987 (13)
Cd1—O2i2.5273 (12)Cd1—N12.3243 (15)
Cd1—O32.3739 (13)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.862.102.931 (2)162
N2—H2B···O4i0.862.142.963 (2)161
O5—H5A···O3iii0.871.892.761 (2)177
O5—H5B···O6iv0.841.872.689 (2)165
C3A—H3A···O3i0.932.393.303 (3)169
C11—H11···O5iii0.932.603.481 (2)159
C17—H17···O4i0.932.453.286 (2)150
C21—H21···O3iii0.932.513.352 (3)150
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x, y1, z.
Acknowledgements top

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

references
References top

Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.

Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366.

Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.

Hökelek, T., Sağlam, E. G., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2010b). Acta Cryst. E66, m1559–m1560.

Hökelek, T., Süzen, Y., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2010a). Acta Cryst. E66, m782–m783.

Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417.

Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m198–m199.