supplementary materials


xu5652 scheme

Acta Cryst. (2012). E68, m1550    [ doi:10.1107/S160053681204737X ]

[[mu]-1,2,3,4-Tetrakis(pyridin-4-yl)butane-[kappa]2N1:N4]bis[trimethyl(thiocyanato-[kappa]N)tin(IV)]

E. Najafi, M. M. Amini and S. W. Ng

Abstract top

In the title compound, [Sn2(CH3)6(NCS)2(C24H22N4)], the 1,2,3,4-tetrakis(pyridin-4-yl)butane ligand uses the pyridine N atoms at the ends of the butyl chain to coordinate to two trimethylthiocyanatotin(IV) units, forming a dinuclear structure. The SnIV atom in the molecule shows a distorted trans-trigonal-bipyramidal coordination with the methyl groups in equatorial positions. The molecule lies on a center of inversion, with the mid-point of the butyl chain coinciding with this symmetry element. In the crystal, weak C-H...[pi] interactions occur between pyridine rings of adjacent molecules.

Comment top

Unlike trimethyltin chloride, the pseudohalide, trimethyltin thiocyanate, furnishes only few coordination compounds with aromatic amines. Trimethyltin thiocyanate itself exists as a zigzag chain in which the thiocyanate unit bridges adjacent trimethyltin cations (Forder & Sheldrick, 1970). The title adduct (Scheme I, Fig. 1) is the first crystal structure report of such an adduct. The tetrapyridyl-substitutent butane ligand, C24H22N4, uses the pyridine N-atoms at the either ends of the butyl chain to coordinate to a trimethylthiocyanatotin unit. The dinuclear molecule lies on a center-of-inversion, with the mid-point of the butyl chain coinciding with this symmetry element.

The Sn atom is displaced out of the trigonal plane, in the direction of the thiocyanate ion, by 0.036 (2) Å.

Related literature top

For trimethyltin(IV) thiocyanate, see: Forder & Sheldrick (1970).

Experimental top

Trimethyltin thiocyanate (0.19 g, 1 mmol) and 4-[1,3,4-tris(pyridin-4-yl)butan-2-yl]pyridine (0.73 g, 2 mmol) were loaded into a convection tube; the tube was filled with ethyl alcohol andkept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [(CH3)3Sn(NCS)]2(C24H22N4) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[µ-1,2,3,4-Tetrakis(pyridin-4-yl)butane- κ2N1:N4]bis[trimethyl(thiocyanato-κN)tin(IV)] top
Crystal data top
[Sn2(CH3)6(NCS)2(C24H22N4)]Z = 1
Mr = 810.20F(000) = 406
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2959 (8) ÅCell parameters from 3676 reflections
b = 9.7210 (7) Åθ = 2.9–27.5°
c = 10.2448 (9) ŵ = 1.54 mm1
α = 90.388 (7)°T = 295 K
β = 94.381 (7)°Prism, colorless
γ = 103.646 (7)°0.25 × 0.25 × 0.05 mm
V = 896.72 (13) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4153 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3645 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1012
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.700, Tmax = 0.927l = 1213
8527 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.1997P]
where P = (Fo2 + 2Fc2)/3
4153 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Sn2(CH3)6(NCS)2(C24H22N4)]γ = 103.646 (7)°
Mr = 810.20V = 896.72 (13) Å3
Triclinic, P1Z = 1
a = 9.2959 (8) ÅMo Kα radiation
b = 9.7210 (7) ŵ = 1.54 mm1
c = 10.2448 (9) ÅT = 295 K
α = 90.388 (7)°0.25 × 0.25 × 0.05 mm
β = 94.381 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4153 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3645 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.927Rint = 0.030
8527 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.50 e Å3
S = 1.05Δρmin = 0.52 e Å3
4153 reflectionsAbsolute structure: ?
190 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.76200 (2)0.553034 (18)0.347974 (18)0.03890 (8)
S11.20140 (12)0.90346 (10)0.55879 (11)0.0742 (3)
N10.9749 (3)0.7032 (3)0.4286 (3)0.0656 (9)
N20.5239 (3)0.3899 (2)0.2637 (2)0.0347 (5)
N30.3574 (3)0.2627 (3)0.0683 (3)0.0566 (7)
C10.6775 (5)0.7271 (3)0.2837 (4)0.0666 (11)
H1A0.75030.81360.30560.100*
H1B0.58880.72730.32590.100*
H1C0.65490.71930.19060.100*
C20.7196 (4)0.4771 (3)0.5374 (3)0.0531 (8)
H2A0.79870.52480.59930.080*
H2B0.71330.37710.53810.080*
H2C0.62750.49480.56080.080*
C30.8759 (4)0.4507 (4)0.2210 (3)0.0579 (9)
H3A0.98030.49380.23210.087*
H3B0.83970.45970.13190.087*
H3C0.85920.35220.24140.087*
C41.0677 (4)0.7876 (3)0.4841 (3)0.0458 (7)
C50.4359 (3)0.4259 (3)0.1683 (3)0.0382 (6)
H50.46980.51060.12640.046*
C60.2962 (3)0.3436 (3)0.1280 (3)0.0403 (6)
H60.23880.37340.06060.048*
C70.2420 (3)0.2165 (3)0.1887 (3)0.0351 (6)
C80.3340 (3)0.1789 (3)0.2859 (3)0.0437 (7)
H80.30300.09440.32900.052*
C90.4726 (3)0.2655 (3)0.3204 (3)0.0439 (7)
H90.53320.23650.38570.053*
C100.0880 (3)0.1277 (3)0.1497 (3)0.0427 (7)
H10A0.02020.18940.13670.051*
H10B0.05510.06490.22030.051*
C110.0817 (3)0.0381 (2)0.0226 (3)0.0315 (5)
H110.12010.10300.04630.038*
C120.1783 (3)0.0664 (3)0.0395 (2)0.0314 (5)
C130.2892 (3)0.0683 (3)0.0411 (3)0.0373 (6)
H130.30680.00370.10790.045*
C140.3750 (4)0.1665 (3)0.0230 (3)0.0483 (7)
H140.44980.16440.07890.058*
C150.2501 (5)0.2597 (4)0.1456 (4)0.0619 (10)
H150.23530.32570.21150.074*
C160.1589 (4)0.1668 (3)0.1362 (3)0.0510 (8)
H160.08540.17120.19390.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03404 (13)0.03835 (12)0.04120 (12)0.00409 (8)0.00196 (8)0.00293 (8)
S10.0695 (7)0.0535 (5)0.0823 (7)0.0110 (5)0.0211 (5)0.0118 (4)
N10.0449 (18)0.0651 (18)0.076 (2)0.0031 (15)0.0090 (15)0.0174 (15)
N20.0307 (12)0.0330 (11)0.0389 (12)0.0063 (9)0.0018 (9)0.0036 (9)
N30.0480 (18)0.0529 (16)0.072 (2)0.0224 (13)0.0095 (15)0.0021 (14)
C10.071 (3)0.0364 (16)0.086 (3)0.0074 (16)0.018 (2)0.0022 (15)
C20.056 (2)0.066 (2)0.0380 (16)0.0187 (16)0.0005 (14)0.0060 (14)
C30.0422 (19)0.070 (2)0.058 (2)0.0038 (16)0.0117 (15)0.0171 (16)
C40.0440 (18)0.0423 (15)0.0475 (17)0.0043 (14)0.0004 (14)0.0002 (12)
C50.0411 (16)0.0313 (13)0.0384 (14)0.0028 (11)0.0019 (12)0.0001 (10)
C60.0413 (17)0.0400 (14)0.0388 (15)0.0126 (12)0.0102 (12)0.0044 (11)
C70.0282 (14)0.0332 (13)0.0416 (14)0.0035 (11)0.0010 (11)0.0113 (10)
C80.0444 (18)0.0332 (13)0.0480 (16)0.0003 (12)0.0025 (13)0.0029 (11)
C90.0397 (17)0.0365 (14)0.0511 (17)0.0053 (12)0.0116 (13)0.0025 (12)
C100.0279 (15)0.0472 (15)0.0509 (17)0.0054 (12)0.0017 (12)0.0149 (12)
C110.0221 (13)0.0306 (12)0.0394 (13)0.0020 (10)0.0011 (10)0.0032 (10)
C120.0245 (13)0.0342 (12)0.0333 (13)0.0048 (10)0.0038 (10)0.0044 (10)
C130.0323 (15)0.0351 (13)0.0438 (15)0.0065 (11)0.0041 (12)0.0003 (11)
C140.0366 (17)0.0446 (16)0.065 (2)0.0120 (13)0.0039 (14)0.0089 (14)
C150.068 (3)0.0549 (19)0.064 (2)0.0211 (18)0.0032 (19)0.0193 (16)
C160.050 (2)0.0559 (18)0.0497 (18)0.0151 (15)0.0096 (15)0.0136 (14)
Geometric parameters (Å, º) top
Sn1—C12.116 (3)C6—C71.390 (4)
Sn1—C32.119 (3)C6—H60.9300
Sn1—C22.113 (3)C7—C81.371 (4)
Sn1—N12.258 (3)C7—C101.509 (4)
Sn1—N22.489 (2)C8—C91.381 (4)
S1—C41.606 (3)C8—H80.9300
N1—C41.152 (4)C9—H90.9300
N2—C51.328 (3)C10—C111.551 (4)
N2—C91.344 (3)C10—H10A0.9700
N3—C141.319 (4)C10—H10B0.9700
N3—C151.326 (5)C11—C121.509 (4)
C1—H1A0.9600C11—C11i1.557 (5)
C1—H1B0.9600C11—H110.9800
C1—H1C0.9600C12—C131.373 (4)
C2—H2A0.9600C12—C161.388 (4)
C2—H2B0.9600C13—C141.385 (4)
C2—H2C0.9600C13—H130.9300
C3—H3A0.9600C14—H140.9300
C3—H3B0.9600C15—C161.376 (5)
C3—H3C0.9600C15—H150.9300
C5—C61.386 (4)C16—H160.9300
C5—H50.9300
C1—Sn1—C3120.57 (17)C5—C6—H6120.1
C1—Sn1—C2118.37 (16)C7—C6—H6120.1
C3—Sn1—C2120.97 (15)C8—C7—C6116.6 (2)
C1—Sn1—N190.01 (13)C8—C7—C10122.7 (2)
C3—Sn1—N192.20 (13)C6—C7—C10120.7 (3)
C2—Sn1—N190.71 (12)C7—C8—C9120.5 (2)
C1—Sn1—N289.41 (11)C7—C8—H8119.8
C3—Sn1—N289.29 (10)C9—C8—H8119.8
C2—Sn1—N288.33 (10)N2—C9—C8123.0 (3)
N1—Sn1—N2178.49 (10)N2—C9—H9118.5
C4—N1—Sn1168.1 (3)C8—C9—H9118.5
C5—N2—C9116.8 (2)C7—C10—C11112.5 (2)
C5—N2—Sn1121.93 (16)C7—C10—H10A109.1
C9—N2—Sn1121.08 (18)C11—C10—H10A109.1
C14—N3—C15115.2 (3)C7—C10—H10B109.1
Sn1—C1—H1A109.5C11—C10—H10B109.1
Sn1—C1—H1B109.5H10A—C10—H10B107.8
H1A—C1—H1B109.5C12—C11—C10111.5 (2)
Sn1—C1—H1C109.5C12—C11—C11i111.1 (2)
H1A—C1—H1C109.5C10—C11—C11i110.7 (3)
H1B—C1—H1C109.5C12—C11—H11107.8
Sn1—C2—H2A109.5C10—C11—H11107.8
Sn1—C2—H2B109.5C11i—C11—H11107.8
H2A—C2—H2B109.5C13—C12—C16116.3 (3)
Sn1—C2—H2C109.5C13—C12—C11121.8 (2)
H2A—C2—H2C109.5C16—C12—C11121.9 (3)
H2B—C2—H2C109.5C12—C13—C14120.1 (3)
Sn1—C3—H3A109.5C12—C13—H13119.9
Sn1—C3—H3B109.5C14—C13—H13119.9
H3A—C3—H3B109.5N3—C14—C13124.2 (3)
Sn1—C3—H3C109.5N3—C14—H14117.9
H3A—C3—H3C109.5C13—C14—H14117.9
H3B—C3—H3C109.5N3—C15—C16125.3 (3)
N1—C4—S1178.0 (3)N3—C15—H15117.4
N2—C5—C6123.3 (2)C16—C15—H15117.4
N2—C5—H5118.3C15—C16—C12119.0 (3)
C6—C5—H5118.3C15—C16—H16120.5
C5—C6—C7119.8 (3)C12—C16—H16120.5
C1—Sn1—N1—C464.3 (14)C7—C8—C9—N21.0 (5)
C3—Sn1—N1—C4175.1 (14)C8—C7—C10—C11101.4 (3)
C2—Sn1—N1—C454.0 (14)C6—C7—C10—C1179.9 (3)
C1—Sn1—N2—C524.7 (2)C7—C10—C11—C1262.2 (3)
C3—Sn1—N2—C595.9 (2)C7—C10—C11—C11i173.6 (3)
C2—Sn1—N2—C5143.1 (2)C10—C11—C12—C13123.3 (3)
C1—Sn1—N2—C9149.7 (3)C11i—C11—C12—C13112.7 (3)
C3—Sn1—N2—C989.7 (2)C10—C11—C12—C1657.5 (3)
C2—Sn1—N2—C931.3 (2)C11i—C11—C12—C1666.6 (4)
C9—N2—C5—C61.3 (4)C16—C12—C13—C140.3 (4)
Sn1—N2—C5—C6173.4 (2)C11—C12—C13—C14179.6 (2)
N2—C5—C6—C70.1 (4)C15—N3—C14—C130.6 (5)
C5—C6—C7—C81.0 (4)C12—C13—C14—N30.5 (4)
C5—C6—C7—C10177.9 (3)C14—N3—C15—C160.5 (5)
C6—C7—C8—C90.4 (4)N3—C15—C16—C120.3 (6)
C10—C7—C8—C9178.4 (3)C13—C12—C16—C150.2 (4)
C5—N2—C9—C81.8 (4)C11—C12—C16—C15179.5 (3)
Sn1—N2—C9—C8172.9 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2-pyridine ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cgii0.932.793.631 (4)151
Symmetry code: (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2-pyridine ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cgi0.932.79053.631 (4)151
Symmetry code: (i) x+1, y, z.
Acknowledgements top

The authors thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Forder, R. A. & Sheldrick, G. M. (1970). J. Organomet. Chem. 21, 115–120.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.