metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­bis­­(2-methyl­quinolin-8-olato-κ2N,O)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 November 2012; accepted 19 November 2012; online 28 November 2012)

The SnIV cation in the title compound, [Sn(CH3)2(C10H8NO)2], is N,O-chelated by two 2-methyl­quinolin-8-olate anions and coordinated by two methyl groups in a skew-trapezoidal bipyramidal geometry. In the mol­ecule, the two quinoline ring systems are twisted to one another at 10.91 (18)°. The dimethyl­tin skeleton [C—Sn—C = 149.6 (2)°] is bent over the longer edge of the trapezoid that is defined by the four chelating atoms. Weak inter­molecular C—H⋯O hydrogen bonding occurs in the crystal.

Related literature

For ethyl­propyl­bis­(2-methyl-8-quinolinato)tin(IV), see: Das et al. (1984[Das, V. G., Chen, W., Yap, C. K. & Sinn, E. (1984). Chem. Commun. pp. 1418-1419.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C10H8NO)2]

  • Mr = 465.11

  • Monoclinic, P 21 /n

  • a = 8.0434 (4) Å

  • b = 20.6952 (10) Å

  • c = 12.0102 (6) Å

  • β = 95.420 (5)°

  • V = 1990.28 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 295 K

  • 0.25 × 0.25 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.737, Tmax = 0.938

  • 20963 measured reflections

  • 4600 independent reflections

  • 3410 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.05

  • 4600 reflections

  • 246 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3C⋯O2i 0.96 2.49 3.353 (7) 149
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The deprotonated 2-methy-8-hydroxyquinoline ligand chelates to the metal atom of a diorganotin skeleton bu the proximity of the methyl substitutent in the aromatic system results in a six-coordinate geometry that is distorted towards a skew-trapezoidal bipyramid, as noted in the ethylpropyltin derivative (Kumar Das et al., 1984). The SnIV atom in the dimethyltin analog (Scheme I, Fig. 1) is chelated by the 2-methyl-8-quinolinate ion and it exists in a skew-trapezoidal bipyramidal geometry [C–Sn–C 149.6 (2) °].

The dimethyltin skeleton is arched over the long side of the trazepoid defined by the chelating N and O atoms.

Related literature top

For ethylpropylbis(2-methyl-8-quinolinato)tin(IV), see: Kumar Das et al. (1984).

Experimental top

Dimethyltin dichloride (0.22 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.36 g, 2 mmol) were loaded into a convection tube; the tube was filled with ethyl alcohol and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

As the atoms C15 to C19 showed somewhat elongated ellipsoids, their anisotropic temperature factors were restrained to approximate isotropic behavior.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (CH3)2Sn(C10H8NO)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Dimethylbis(2-methylquinolin-8-olato-κ2N,O)tin(IV) top
Crystal data top
[Sn(CH3)2(C10H8NO)2]F(000) = 936
Mr = 465.11Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4858 reflections
a = 8.0434 (4) Åθ = 2.9–27.5°
b = 20.6952 (10) ŵ = 1.30 mm1
c = 12.0102 (6) ÅT = 295 K
β = 95.420 (5)°Prism, yellow
V = 1990.28 (17) Å30.25 × 0.25 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4600 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3410 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2626
Tmin = 0.737, Tmax = 0.938l = 1115
20963 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0354P)2 + 1.6968P]
where P = (Fo2 + 2Fc2)/3
4600 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.79 e Å3
30 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Sn(CH3)2(C10H8NO)2]V = 1990.28 (17) Å3
Mr = 465.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0434 (4) ŵ = 1.30 mm1
b = 20.6952 (10) ÅT = 295 K
c = 12.0102 (6) Å0.25 × 0.25 × 0.05 mm
β = 95.420 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4600 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3410 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.938Rint = 0.046
20963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03930 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.79 e Å3
4600 reflectionsΔρmin = 0.49 e Å3
246 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.31642 (3)0.682497 (12)0.39615 (2)0.04048 (10)
O10.4151 (3)0.60834 (13)0.3067 (3)0.0537 (7)
O20.5350 (3)0.72786 (13)0.3645 (2)0.0511 (7)
N10.1010 (4)0.59118 (17)0.3762 (3)0.0524 (9)
N20.3308 (6)0.79119 (19)0.4985 (3)0.0644 (11)
C10.1501 (6)0.7308 (2)0.2773 (4)0.0610 (12)
H1A0.17560.71950.20330.091*
H1B0.16180.77670.28760.091*
H1C0.03760.71830.28710.091*
C30.1319 (7)0.6398 (3)0.4603 (6)0.099 (2)
H3A0.06200.67730.45890.149*
H3B0.14530.62850.53650.149*
H3C0.23920.64890.42160.149*
C20.3722 (6)0.6462 (2)0.5594 (4)0.0641 (13)
H2A0.39110.60050.55610.096*
H2B0.28020.65460.60280.096*
H2C0.47070.66710.59370.096*
C40.0528 (6)0.5848 (3)0.4043 (4)0.0696 (15)
C50.1415 (7)0.5271 (4)0.3834 (5)0.085 (2)
H50.24990.52340.40370.102*
C60.0701 (9)0.4767 (3)0.3338 (5)0.093 (2)
H60.12930.43840.32150.112*
C70.0916 (7)0.4816 (2)0.3008 (4)0.0701 (16)
C80.1728 (11)0.4328 (3)0.2467 (5)0.095 (2)
H80.12070.39310.23230.114*
C90.3267 (11)0.4433 (3)0.2156 (5)0.098 (2)
H90.37880.41050.17900.117*
C100.4118 (7)0.5019 (2)0.2362 (4)0.0684 (14)
H100.51860.50720.21400.082*
C110.3376 (6)0.5519 (2)0.2895 (4)0.0511 (10)
C120.1746 (5)0.5415 (2)0.3235 (4)0.0510 (11)
C130.0724 (11)0.7858 (4)0.5910 (6)0.134 (3)
H13A0.01700.81070.64380.201*
H13B0.09920.74380.62180.201*
H13C0.00020.78110.52310.201*
C140.2287 (10)0.8192 (3)0.5665 (4)0.096 (2)
C150.2632 (14)0.8788 (4)0.6124 (6)0.125 (3)
H150.18970.89780.65800.150*
C160.3987 (12)0.9086 (3)0.5919 (6)0.106 (3)
H160.42120.94850.62550.127*
C170.5152 (11)0.8834 (3)0.5205 (6)0.100 (2)
C180.6547 (14)0.9089 (4)0.4912 (8)0.132 (3)
H180.68570.94880.52250.159*
C190.7582 (10)0.8829 (4)0.4195 (8)0.117 (3)
H190.85230.90530.40140.140*
C200.7173 (7)0.8171 (3)0.3703 (6)0.095 (2)
H200.78460.79740.32130.114*
C210.5752 (6)0.7875 (2)0.4016 (4)0.0576 (13)
C220.4726 (8)0.8203 (2)0.4745 (4)0.0658 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03944 (16)0.03883 (16)0.04375 (17)0.00020 (12)0.00699 (11)0.00239 (12)
O10.0472 (16)0.0403 (16)0.076 (2)0.0065 (13)0.0160 (15)0.0110 (14)
O20.0461 (16)0.0464 (17)0.0624 (18)0.0095 (13)0.0135 (14)0.0011 (14)
N10.0410 (19)0.052 (2)0.063 (2)0.0057 (16)0.0012 (17)0.0181 (18)
N20.099 (3)0.053 (2)0.039 (2)0.023 (2)0.006 (2)0.0055 (18)
C10.060 (3)0.058 (3)0.062 (3)0.004 (2)0.005 (2)0.009 (2)
C30.055 (3)0.110 (5)0.138 (6)0.022 (3)0.034 (4)0.050 (5)
C20.067 (3)0.068 (3)0.056 (3)0.004 (2)0.002 (2)0.020 (2)
C40.041 (2)0.089 (4)0.078 (3)0.010 (3)0.004 (2)0.037 (3)
C50.053 (3)0.118 (5)0.079 (4)0.036 (3)0.013 (3)0.047 (4)
C60.097 (5)0.103 (5)0.071 (4)0.065 (4)0.029 (4)0.038 (4)
C70.093 (4)0.058 (3)0.053 (3)0.034 (3)0.021 (3)0.014 (2)
C80.159 (7)0.053 (3)0.068 (4)0.040 (4)0.013 (4)0.005 (3)
C90.162 (7)0.050 (3)0.078 (4)0.007 (4)0.001 (4)0.018 (3)
C100.088 (4)0.047 (3)0.069 (3)0.002 (3)0.004 (3)0.010 (2)
C110.062 (3)0.038 (2)0.052 (2)0.001 (2)0.002 (2)0.0003 (19)
C120.055 (3)0.046 (2)0.049 (2)0.010 (2)0.010 (2)0.011 (2)
C130.144 (7)0.190 (8)0.077 (4)0.086 (7)0.060 (5)0.019 (5)
C140.160 (7)0.085 (4)0.040 (3)0.066 (4)0.009 (4)0.014 (3)
C150.174 (7)0.116 (6)0.080 (4)0.063 (5)0.015 (5)0.021 (4)
C160.172 (6)0.062 (4)0.072 (4)0.042 (4)0.045 (4)0.032 (3)
C170.132 (5)0.067 (4)0.089 (4)0.000 (4)0.054 (4)0.010 (3)
C180.149 (7)0.094 (5)0.139 (6)0.020 (5)0.067 (6)0.026 (5)
C190.086 (4)0.097 (5)0.156 (6)0.053 (4)0.045 (4)0.062 (4)
C200.057 (3)0.077 (4)0.143 (6)0.022 (3)0.025 (4)0.053 (4)
C210.054 (3)0.049 (3)0.065 (3)0.013 (2)0.018 (2)0.023 (2)
C220.100 (4)0.037 (2)0.053 (3)0.007 (3)0.033 (3)0.004 (2)
Geometric parameters (Å, º) top
Sn1—O22.060 (3)C7—C81.397 (9)
Sn1—O12.073 (3)C7—C121.422 (6)
Sn1—C22.108 (4)C8—C91.344 (10)
Sn1—C12.113 (4)C8—H80.9300
Sn1—N12.560 (3)C9—C101.403 (8)
Sn1—N22.561 (4)C9—H90.9300
O1—C111.331 (5)C10—C111.381 (6)
O2—C211.341 (5)C10—H100.9300
N1—C41.320 (6)C11—C121.426 (6)
N1—C121.369 (6)C13—C141.489 (11)
N2—C141.343 (7)C13—H13A0.9600
N2—C221.345 (7)C13—H13B0.9600
C1—H1A0.9600C13—H13C0.9600
C1—H1B0.9600C14—C151.368 (10)
C1—H1C0.9600C15—C161.296 (11)
C3—C41.495 (8)C15—H150.9300
C3—H3A0.9600C16—C171.427 (11)
C3—H3B0.9600C16—H160.9300
C3—H3C0.9600C17—C181.318 (12)
C2—H2A0.9600C17—C221.448 (7)
C2—H2B0.9600C18—C191.364 (12)
C2—H2C0.9600C18—H180.9300
C4—C51.400 (8)C19—C201.508 (10)
C5—C61.356 (9)C19—H190.9300
C5—H50.9300C20—C211.380 (7)
C6—C71.399 (9)C20—H200.9300
C6—H60.9300C21—C221.430 (8)
O2—Sn1—O182.34 (11)C8—C7—C12119.3 (5)
O2—Sn1—C2102.92 (16)C6—C7—C12116.1 (6)
O1—Sn1—C299.20 (17)C9—C8—C7119.6 (5)
O2—Sn1—C199.00 (16)C9—C8—H8120.2
O1—Sn1—C1104.44 (16)C7—C8—H8120.2
C2—Sn1—C1149.6 (2)C8—C9—C10122.6 (6)
O2—Sn1—N1154.31 (12)C8—C9—H9118.7
O1—Sn1—N172.16 (12)C10—C9—H9118.7
C2—Sn1—N184.66 (15)C11—C10—C9120.3 (6)
C1—Sn1—N184.63 (15)C11—C10—H10119.9
O2—Sn1—N271.80 (14)C9—C10—H10119.9
O1—Sn1—N2153.73 (14)O1—C11—C10120.8 (4)
C2—Sn1—N282.55 (16)O1—C11—C12121.2 (4)
C1—Sn1—N284.58 (15)C10—C11—C12118.0 (4)
N1—Sn1—N2133.87 (15)N1—C12—C7121.8 (5)
C11—O1—Sn1122.2 (3)N1—C12—C11117.9 (4)
C21—O2—Sn1122.8 (3)C7—C12—C11120.2 (5)
C4—N1—C12120.0 (4)C14—C13—H13A109.5
C4—N1—Sn1133.9 (4)C14—C13—H13B109.5
C12—N1—Sn1106.2 (3)H13A—C13—H13B109.5
C14—N2—C22121.1 (5)C14—C13—H13C109.5
C14—N2—Sn1132.0 (5)H13A—C13—H13C109.5
C22—N2—Sn1106.9 (3)H13B—C13—H13C109.5
Sn1—C1—H1A109.5N2—C14—C15121.4 (9)
Sn1—C1—H1B109.5N2—C14—C13119.7 (6)
H1A—C1—H1B109.5C15—C14—C13118.8 (7)
Sn1—C1—H1C109.5C16—C15—C14119.6 (9)
H1A—C1—H1C109.5C16—C15—H15120.2
H1B—C1—H1C109.5C14—C15—H15120.2
C4—C3—H3A109.5C15—C16—C17123.5 (7)
C4—C3—H3B109.5C15—C16—H16118.2
H3A—C3—H3B109.5C17—C16—H16118.2
C4—C3—H3C109.5C18—C17—C16129.7 (8)
H3A—C3—H3C109.5C18—C17—C22115.9 (9)
H3B—C3—H3C109.5C16—C17—C22114.5 (7)
Sn1—C2—H2A109.5C17—C18—C19126.6 (9)
Sn1—C2—H2B109.5C17—C18—H18116.7
H2A—C2—H2B109.5C19—C18—H18116.7
Sn1—C2—H2C109.5C18—C19—C20118.7 (7)
H2A—C2—H2C109.5C18—C19—H19120.6
H2B—C2—H2C109.5C20—C19—H19120.6
N1—C4—C5120.9 (6)C21—C20—C19116.7 (7)
N1—C4—C3119.2 (5)C21—C20—H20121.6
C5—C4—C3119.9 (5)C19—C20—H20121.6
C6—C5—C4120.3 (6)O2—C21—C20119.9 (5)
C6—C5—H5119.9O2—C21—C22120.3 (4)
C4—C5—H5119.9C20—C21—C22119.8 (5)
C5—C6—C7120.9 (5)N2—C22—C21118.0 (4)
C5—C6—H6119.6N2—C22—C17119.8 (6)
C7—C6—H6119.6C21—C22—C17122.2 (6)
C8—C7—C6124.6 (6)
O2—Sn1—O1—C11178.2 (3)Sn1—O1—C11—C125.6 (5)
C2—Sn1—O1—C1176.3 (3)C9—C10—C11—O1178.1 (5)
C1—Sn1—O1—C1184.4 (3)C9—C10—C11—C120.8 (7)
N1—Sn1—O1—C115.0 (3)C4—N1—C12—C72.0 (6)
N2—Sn1—O1—C11168.1 (3)Sn1—N1—C12—C7178.5 (3)
O1—Sn1—O2—C21178.9 (3)C4—N1—C12—C11176.8 (4)
C2—Sn1—O2—C2181.2 (3)Sn1—N1—C12—C112.8 (4)
C1—Sn1—O2—C2177.6 (3)C8—C7—C12—N1179.9 (4)
N1—Sn1—O2—C21174.0 (3)C6—C7—C12—N10.9 (6)
N2—Sn1—O2—C213.6 (3)C8—C7—C12—C111.2 (7)
O2—Sn1—N1—C4168.1 (4)C6—C7—C12—C11177.8 (4)
O1—Sn1—N1—C4175.5 (4)O1—C11—C12—N11.0 (6)
C2—Sn1—N1—C483.0 (4)C10—C11—C12—N1179.9 (4)
C1—Sn1—N1—C468.5 (4)O1—C11—C12—C7177.8 (4)
N2—Sn1—N1—C48.7 (5)C10—C11—C12—C71.1 (6)
O2—Sn1—N1—C1211.4 (4)C22—N2—C14—C151.2 (8)
O1—Sn1—N1—C124.0 (2)Sn1—N2—C14—C15179.9 (4)
C2—Sn1—N1—C1297.5 (3)C22—N2—C14—C13179.8 (5)
C1—Sn1—N1—C12111.0 (3)Sn1—N2—C14—C131.5 (7)
N2—Sn1—N1—C12171.8 (2)N2—C14—C15—C161.4 (10)
O2—Sn1—N2—C14177.6 (4)C13—C14—C15—C16180.0 (7)
O1—Sn1—N2—C14167.0 (4)C14—C15—C16—C171.7 (12)
C2—Sn1—N2—C1471.3 (4)C15—C16—C17—C18178.6 (8)
C1—Sn1—N2—C1481.1 (4)C15—C16—C17—C221.7 (9)
N1—Sn1—N2—C143.9 (5)C16—C17—C18—C19177.9 (7)
O2—Sn1—N2—C221.3 (3)C22—C17—C18—C192.4 (11)
O1—Sn1—N2—C2211.9 (4)C17—C18—C19—C202.6 (12)
C2—Sn1—N2—C22107.6 (3)C18—C19—C20—C210.2 (9)
C1—Sn1—N2—C22100.0 (3)Sn1—O2—C21—C20175.0 (3)
N1—Sn1—N2—C22177.2 (2)Sn1—O2—C21—C225.7 (5)
C12—N1—C4—C51.4 (7)C19—C20—C21—O2177.4 (4)
Sn1—N1—C4—C5179.1 (3)C19—C20—C21—C221.9 (7)
C12—N1—C4—C3179.2 (4)C14—N2—C22—C21179.9 (4)
Sn1—N1—C4—C30.3 (7)Sn1—N2—C22—C210.9 (4)
N1—C4—C5—C60.1 (8)C14—N2—C22—C171.2 (7)
C3—C4—C5—C6179.3 (5)Sn1—N2—C22—C17179.7 (3)
C4—C5—C6—C71.2 (8)O2—C21—C22—N24.0 (6)
C5—C6—C7—C8178.3 (5)C20—C21—C22—N2176.7 (4)
C5—C6—C7—C120.6 (7)O2—C21—C22—C17177.2 (4)
C6—C7—C8—C9178.0 (6)C20—C21—C22—C172.1 (7)
C12—C7—C8—C90.9 (8)C18—C17—C22—N2178.8 (5)
C7—C8—C9—C100.7 (10)C16—C17—C22—N21.4 (7)
C8—C9—C10—C110.6 (9)C18—C17—C22—C210.0 (8)
Sn1—O1—C11—C10175.5 (3)C16—C17—C22—C21179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···O2i0.962.493.353 (7)149
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C10H8NO)2]
Mr465.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.0434 (4), 20.6952 (10), 12.0102 (6)
β (°) 95.420 (5)
V3)1990.28 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.25 × 0.25 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.737, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
20963, 4600, 3410
Rint0.046
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.05
No. of reflections4600
No. of parameters246
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.49

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···O2i0.962.493.353 (7)149
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDas, V. G., Chen, W., Yap, C. K. & Sinn, E. (1984). Chem. Commun. pp. 1418–1419.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds