supplementary materials


xu5653 scheme

Acta Cryst. (2012). E68, m1551    [ doi:10.1107/S1600536812047393 ]

Dimethylbis(2-methylquinolin-8-olato-[kappa]2N,O)tin(IV)

E. Najafi, M. M. Amini and S. W. Ng

Abstract top

The SnIV cation in the title compound, [Sn(CH3)2(C10H8NO)2], is N,O-chelated by two 2-methylquinolin-8-olate anions and coordinated by two methyl groups in a skew-trapezoidal bipyramidal geometry. In the molecule, the two quinoline ring systems are twisted to one another at 10.91 (18)°. The dimethyltin skeleton [C-Sn-C = 149.6 (2)°] is bent over the longer edge of the trapezoid that is defined by the four chelating atoms. Weak intermolecular C-H...O hydrogen bonding occurs in the crystal.

Comment top

The deprotonated 2-methy-8-hydroxyquinoline ligand chelates to the metal atom of a diorganotin skeleton bu the proximity of the methyl substitutent in the aromatic system results in a six-coordinate geometry that is distorted towards a skew-trapezoidal bipyramid, as noted in the ethylpropyltin derivative (Kumar Das et al., 1984). The SnIV atom in the dimethyltin analog (Scheme I, Fig. 1) is chelated by the 2-methyl-8-quinolinate ion and it exists in a skew-trapezoidal bipyramidal geometry [C–Sn–C 149.6 (2) °].

The dimethyltin skeleton is arched over the long side of the trazepoid defined by the chelating N and O atoms.

Related literature top

For ethylpropylbis(2-methyl-8-quinolinato)tin(IV), see: Kumar Das et al. (1984).

Experimental top

Dimethyltin dichloride (0.22 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.36 g, 2 mmol) were loaded into a convection tube; the tube was filled with ethyl alcohol and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

As the atoms C15 to C19 showed somewhat elongated ellipsoids, their anisotropic temperature factors were restrained to approximate isotropic behavior.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (CH3)2Sn(C10H8NO)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Dimethylbis(2-methylquinolin-8-olato-κ2N,O)tin(IV) top
Crystal data top
[Sn(CH3)2(C10H8NO)2]F(000) = 936
Mr = 465.11Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4858 reflections
a = 8.0434 (4) Åθ = 2.9–27.5°
b = 20.6952 (10) ŵ = 1.30 mm1
c = 12.0102 (6) ÅT = 295 K
β = 95.420 (5)°Prism, yellow
V = 1990.28 (17) Å30.25 × 0.25 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4600 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3410 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2626
Tmin = 0.737, Tmax = 0.938l = 1115
20963 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0354P)2 + 1.6968P]
where P = (Fo2 + 2Fc2)/3
4600 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.79 e Å3
30 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Sn(CH3)2(C10H8NO)2]V = 1990.28 (17) Å3
Mr = 465.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0434 (4) ŵ = 1.30 mm1
b = 20.6952 (10) ÅT = 295 K
c = 12.0102 (6) Å0.25 × 0.25 × 0.05 mm
β = 95.420 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4600 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3410 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.938Rint = 0.046
20963 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.79 e Å3
S = 1.05Δρmin = 0.49 e Å3
4600 reflectionsAbsolute structure: ?
246 parametersFlack parameter: ?
30 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.31642 (3)0.682497 (12)0.39615 (2)0.04048 (10)
O10.4151 (3)0.60834 (13)0.3067 (3)0.0537 (7)
O20.5350 (3)0.72786 (13)0.3645 (2)0.0511 (7)
N10.1010 (4)0.59118 (17)0.3762 (3)0.0524 (9)
N20.3308 (6)0.79119 (19)0.4985 (3)0.0644 (11)
C10.1501 (6)0.7308 (2)0.2773 (4)0.0610 (12)
H1A0.17560.71950.20330.091*
H1B0.16180.77670.28760.091*
H1C0.03760.71830.28710.091*
C30.1319 (7)0.6398 (3)0.4603 (6)0.099 (2)
H3A0.06200.67730.45890.149*
H3B0.14530.62850.53650.149*
H3C0.23920.64890.42160.149*
C20.3722 (6)0.6462 (2)0.5594 (4)0.0641 (13)
H2A0.39110.60050.55610.096*
H2B0.28020.65460.60280.096*
H2C0.47070.66710.59370.096*
C40.0528 (6)0.5848 (3)0.4043 (4)0.0696 (15)
C50.1415 (7)0.5271 (4)0.3834 (5)0.085 (2)
H50.24990.52340.40370.102*
C60.0701 (9)0.4767 (3)0.3338 (5)0.093 (2)
H60.12930.43840.32150.112*
C70.0916 (7)0.4816 (2)0.3008 (4)0.0701 (16)
C80.1728 (11)0.4328 (3)0.2467 (5)0.095 (2)
H80.12070.39310.23230.114*
C90.3267 (11)0.4433 (3)0.2156 (5)0.098 (2)
H90.37880.41050.17900.117*
C100.4118 (7)0.5019 (2)0.2362 (4)0.0684 (14)
H100.51860.50720.21400.082*
C110.3376 (6)0.5519 (2)0.2895 (4)0.0511 (10)
C120.1746 (5)0.5415 (2)0.3235 (4)0.0510 (11)
C130.0724 (11)0.7858 (4)0.5910 (6)0.134 (3)
H13A0.01700.81070.64380.201*
H13B0.09920.74380.62180.201*
H13C0.00020.78110.52310.201*
C140.2287 (10)0.8192 (3)0.5665 (4)0.096 (2)
C150.2632 (14)0.8788 (4)0.6124 (6)0.125 (3)
H150.18970.89780.65800.150*
C160.3987 (12)0.9086 (3)0.5919 (6)0.106 (3)
H160.42120.94850.62550.127*
C170.5152 (11)0.8834 (3)0.5205 (6)0.100 (2)
C180.6547 (14)0.9089 (4)0.4912 (8)0.132 (3)
H180.68570.94880.52250.159*
C190.7582 (10)0.8829 (4)0.4195 (8)0.117 (3)
H190.85230.90530.40140.140*
C200.7173 (7)0.8171 (3)0.3703 (6)0.095 (2)
H200.78460.79740.32130.114*
C210.5752 (6)0.7875 (2)0.4016 (4)0.0576 (13)
C220.4726 (8)0.8203 (2)0.4745 (4)0.0658 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03944 (16)0.03883 (16)0.04375 (17)0.00020 (12)0.00699 (11)0.00239 (12)
O10.0472 (16)0.0403 (16)0.076 (2)0.0065 (13)0.0160 (15)0.0110 (14)
O20.0461 (16)0.0464 (17)0.0624 (18)0.0095 (13)0.0135 (14)0.0011 (14)
N10.0410 (19)0.052 (2)0.063 (2)0.0057 (16)0.0012 (17)0.0181 (18)
N20.099 (3)0.053 (2)0.039 (2)0.023 (2)0.006 (2)0.0055 (18)
C10.060 (3)0.058 (3)0.062 (3)0.004 (2)0.005 (2)0.009 (2)
C30.055 (3)0.110 (5)0.138 (6)0.022 (3)0.034 (4)0.050 (5)
C20.067 (3)0.068 (3)0.056 (3)0.004 (2)0.002 (2)0.020 (2)
C40.041 (2)0.089 (4)0.078 (3)0.010 (3)0.004 (2)0.037 (3)
C50.053 (3)0.118 (5)0.079 (4)0.036 (3)0.013 (3)0.047 (4)
C60.097 (5)0.103 (5)0.071 (4)0.065 (4)0.029 (4)0.038 (4)
C70.093 (4)0.058 (3)0.053 (3)0.034 (3)0.021 (3)0.014 (2)
C80.159 (7)0.053 (3)0.068 (4)0.040 (4)0.013 (4)0.005 (3)
C90.162 (7)0.050 (3)0.078 (4)0.007 (4)0.001 (4)0.018 (3)
C100.088 (4)0.047 (3)0.069 (3)0.002 (3)0.004 (3)0.010 (2)
C110.062 (3)0.038 (2)0.052 (2)0.001 (2)0.002 (2)0.0003 (19)
C120.055 (3)0.046 (2)0.049 (2)0.010 (2)0.010 (2)0.011 (2)
C130.144 (7)0.190 (8)0.077 (4)0.086 (7)0.060 (5)0.019 (5)
C140.160 (7)0.085 (4)0.040 (3)0.066 (4)0.009 (4)0.014 (3)
C150.174 (7)0.116 (6)0.080 (4)0.063 (5)0.015 (5)0.021 (4)
C160.172 (6)0.062 (4)0.072 (4)0.042 (4)0.045 (4)0.032 (3)
C170.132 (5)0.067 (4)0.089 (4)0.000 (4)0.054 (4)0.010 (3)
C180.149 (7)0.094 (5)0.139 (6)0.020 (5)0.067 (6)0.026 (5)
C190.086 (4)0.097 (5)0.156 (6)0.053 (4)0.045 (4)0.062 (4)
C200.057 (3)0.077 (4)0.143 (6)0.022 (3)0.025 (4)0.053 (4)
C210.054 (3)0.049 (3)0.065 (3)0.013 (2)0.018 (2)0.023 (2)
C220.100 (4)0.037 (2)0.053 (3)0.007 (3)0.033 (3)0.004 (2)
Geometric parameters (Å, º) top
Sn1—O22.060 (3)C7—C81.397 (9)
Sn1—O12.073 (3)C7—C121.422 (6)
Sn1—C22.108 (4)C8—C91.344 (10)
Sn1—C12.113 (4)C8—H80.9300
Sn1—N12.560 (3)C9—C101.403 (8)
Sn1—N22.561 (4)C9—H90.9300
O1—C111.331 (5)C10—C111.381 (6)
O2—C211.341 (5)C10—H100.9300
N1—C41.320 (6)C11—C121.426 (6)
N1—C121.369 (6)C13—C141.489 (11)
N2—C141.343 (7)C13—H13A0.9600
N2—C221.345 (7)C13—H13B0.9600
C1—H1A0.9600C13—H13C0.9600
C1—H1B0.9600C14—C151.368 (10)
C1—H1C0.9600C15—C161.296 (11)
C3—C41.495 (8)C15—H150.9300
C3—H3A0.9600C16—C171.427 (11)
C3—H3B0.9600C16—H160.9300
C3—H3C0.9600C17—C181.318 (12)
C2—H2A0.9600C17—C221.448 (7)
C2—H2B0.9600C18—C191.364 (12)
C2—H2C0.9600C18—H180.9300
C4—C51.400 (8)C19—C201.508 (10)
C5—C61.356 (9)C19—H190.9300
C5—H50.9300C20—C211.380 (7)
C6—C71.399 (9)C20—H200.9300
C6—H60.9300C21—C221.430 (8)
O2—Sn1—O182.34 (11)C8—C7—C12119.3 (5)
O2—Sn1—C2102.92 (16)C6—C7—C12116.1 (6)
O1—Sn1—C299.20 (17)C9—C8—C7119.6 (5)
O2—Sn1—C199.00 (16)C9—C8—H8120.2
O1—Sn1—C1104.44 (16)C7—C8—H8120.2
C2—Sn1—C1149.6 (2)C8—C9—C10122.6 (6)
O2—Sn1—N1154.31 (12)C8—C9—H9118.7
O1—Sn1—N172.16 (12)C10—C9—H9118.7
C2—Sn1—N184.66 (15)C11—C10—C9120.3 (6)
C1—Sn1—N184.63 (15)C11—C10—H10119.9
O2—Sn1—N271.80 (14)C9—C10—H10119.9
O1—Sn1—N2153.73 (14)O1—C11—C10120.8 (4)
C2—Sn1—N282.55 (16)O1—C11—C12121.2 (4)
C1—Sn1—N284.58 (15)C10—C11—C12118.0 (4)
N1—Sn1—N2133.87 (15)N1—C12—C7121.8 (5)
C11—O1—Sn1122.2 (3)N1—C12—C11117.9 (4)
C21—O2—Sn1122.8 (3)C7—C12—C11120.2 (5)
C4—N1—C12120.0 (4)C14—C13—H13A109.5
C4—N1—Sn1133.9 (4)C14—C13—H13B109.5
C12—N1—Sn1106.2 (3)H13A—C13—H13B109.5
C14—N2—C22121.1 (5)C14—C13—H13C109.5
C14—N2—Sn1132.0 (5)H13A—C13—H13C109.5
C22—N2—Sn1106.9 (3)H13B—C13—H13C109.5
Sn1—C1—H1A109.5N2—C14—C15121.4 (9)
Sn1—C1—H1B109.5N2—C14—C13119.7 (6)
H1A—C1—H1B109.5C15—C14—C13118.8 (7)
Sn1—C1—H1C109.5C16—C15—C14119.6 (9)
H1A—C1—H1C109.5C16—C15—H15120.2
H1B—C1—H1C109.5C14—C15—H15120.2
C4—C3—H3A109.5C15—C16—C17123.5 (7)
C4—C3—H3B109.5C15—C16—H16118.2
H3A—C3—H3B109.5C17—C16—H16118.2
C4—C3—H3C109.5C18—C17—C16129.7 (8)
H3A—C3—H3C109.5C18—C17—C22115.9 (9)
H3B—C3—H3C109.5C16—C17—C22114.5 (7)
Sn1—C2—H2A109.5C17—C18—C19126.6 (9)
Sn1—C2—H2B109.5C17—C18—H18116.7
H2A—C2—H2B109.5C19—C18—H18116.7
Sn1—C2—H2C109.5C18—C19—C20118.7 (7)
H2A—C2—H2C109.5C18—C19—H19120.6
H2B—C2—H2C109.5C20—C19—H19120.6
N1—C4—C5120.9 (6)C21—C20—C19116.7 (7)
N1—C4—C3119.2 (5)C21—C20—H20121.6
C5—C4—C3119.9 (5)C19—C20—H20121.6
C6—C5—C4120.3 (6)O2—C21—C20119.9 (5)
C6—C5—H5119.9O2—C21—C22120.3 (4)
C4—C5—H5119.9C20—C21—C22119.8 (5)
C5—C6—C7120.9 (5)N2—C22—C21118.0 (4)
C5—C6—H6119.6N2—C22—C17119.8 (6)
C7—C6—H6119.6C21—C22—C17122.2 (6)
C8—C7—C6124.6 (6)
O2—Sn1—O1—C11178.2 (3)Sn1—O1—C11—C125.6 (5)
C2—Sn1—O1—C1176.3 (3)C9—C10—C11—O1178.1 (5)
C1—Sn1—O1—C1184.4 (3)C9—C10—C11—C120.8 (7)
N1—Sn1—O1—C115.0 (3)C4—N1—C12—C72.0 (6)
N2—Sn1—O1—C11168.1 (3)Sn1—N1—C12—C7178.5 (3)
O1—Sn1—O2—C21178.9 (3)C4—N1—C12—C11176.8 (4)
C2—Sn1—O2—C2181.2 (3)Sn1—N1—C12—C112.8 (4)
C1—Sn1—O2—C2177.6 (3)C8—C7—C12—N1179.9 (4)
N1—Sn1—O2—C21174.0 (3)C6—C7—C12—N10.9 (6)
N2—Sn1—O2—C213.6 (3)C8—C7—C12—C111.2 (7)
O2—Sn1—N1—C4168.1 (4)C6—C7—C12—C11177.8 (4)
O1—Sn1—N1—C4175.5 (4)O1—C11—C12—N11.0 (6)
C2—Sn1—N1—C483.0 (4)C10—C11—C12—N1179.9 (4)
C1—Sn1—N1—C468.5 (4)O1—C11—C12—C7177.8 (4)
N2—Sn1—N1—C48.7 (5)C10—C11—C12—C71.1 (6)
O2—Sn1—N1—C1211.4 (4)C22—N2—C14—C151.2 (8)
O1—Sn1—N1—C124.0 (2)Sn1—N2—C14—C15179.9 (4)
C2—Sn1—N1—C1297.5 (3)C22—N2—C14—C13179.8 (5)
C1—Sn1—N1—C12111.0 (3)Sn1—N2—C14—C131.5 (7)
N2—Sn1—N1—C12171.8 (2)N2—C14—C15—C161.4 (10)
O2—Sn1—N2—C14177.6 (4)C13—C14—C15—C16180.0 (7)
O1—Sn1—N2—C14167.0 (4)C14—C15—C16—C171.7 (12)
C2—Sn1—N2—C1471.3 (4)C15—C16—C17—C18178.6 (8)
C1—Sn1—N2—C1481.1 (4)C15—C16—C17—C221.7 (9)
N1—Sn1—N2—C143.9 (5)C16—C17—C18—C19177.9 (7)
O2—Sn1—N2—C221.3 (3)C22—C17—C18—C192.4 (11)
O1—Sn1—N2—C2211.9 (4)C17—C18—C19—C202.6 (12)
C2—Sn1—N2—C22107.6 (3)C18—C19—C20—C210.2 (9)
C1—Sn1—N2—C22100.0 (3)Sn1—O2—C21—C20175.0 (3)
N1—Sn1—N2—C22177.2 (2)Sn1—O2—C21—C225.7 (5)
C12—N1—C4—C51.4 (7)C19—C20—C21—O2177.4 (4)
Sn1—N1—C4—C5179.1 (3)C19—C20—C21—C221.9 (7)
C12—N1—C4—C3179.2 (4)C14—N2—C22—C21179.9 (4)
Sn1—N1—C4—C30.3 (7)Sn1—N2—C22—C210.9 (4)
N1—C4—C5—C60.1 (8)C14—N2—C22—C171.2 (7)
C3—C4—C5—C6179.3 (5)Sn1—N2—C22—C17179.7 (3)
C4—C5—C6—C71.2 (8)O2—C21—C22—N24.0 (6)
C5—C6—C7—C8178.3 (5)C20—C21—C22—N2176.7 (4)
C5—C6—C7—C120.6 (7)O2—C21—C22—C17177.2 (4)
C6—C7—C8—C9178.0 (6)C20—C21—C22—C172.1 (7)
C12—C7—C8—C90.9 (8)C18—C17—C22—N2178.8 (5)
C7—C8—C9—C100.7 (10)C16—C17—C22—N21.4 (7)
C8—C9—C10—C110.6 (9)C18—C17—C22—C210.0 (8)
Sn1—O1—C11—C10175.5 (3)C16—C17—C22—C21179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···O2i0.962.493.353 (7)149
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3C···O2i0.962.493.353 (7)149
Symmetry code: (i) x1, y, z.
Acknowledgements top

The authors thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Das, V. G., Chen, W., Yap, C. K. & Sinn, E. (1984). Chem. Commun. pp. 1418–1419.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.