supplementary materials


yk2076 scheme

Acta Cryst. (2012). E68, m1526    [ doi:10.1107/S1600536812047733 ]

Di-[mu]-iodido-bis[(biphenyl-2-yl)(triphenylphosphane-[kappa]P)palladium(II)]

S. Brown and G. Crundwell

Abstract top

In the title compound, [Pd2(C12H9)2I2(C18H15P)2], the dimeric complex molecule lies about an inversion center. The Pd...I...Pd bridges are slightly asymmetric, with Pd-I distances of 2.6709 (6) and 2.7486 (7) Å. The metal atom has a slightly puckered square-planar CI2P environment, the largest deviation from the least-squares plane being 0.143 (8) Å.

Comment top

The molecule of the title compound sits on a crystallographic inversion center; thereby requiring only half the molecule to be defined in the asymmetric unit and resulting in a trans- configuration. The metal centers are a slightly puckered square planar geometry. Like similar compounds containing bridging iodines, the iodines are not centered directly between the two metals; instead they have distances of 2.6709 (6) Å and 2.7486 (7) Å from the metal centers [Grushin & Alper, 1993; Marshall et al., 2001; & Lang et al., 2006]. The biphenyl ring is not planar; within the molecule one ring has an angle of 51.89 (39)° relative to the other. All other bond lengths and angles fall within normal values.

Related literature top

For crystal structures containing Pt2I2 units, see: Grushin & Alper (1993); Marshall et al. (2001); Lang et al. (2006).

Experimental top

To a 100 mL three-neck round bottom flask, 0.500 grams of tetrakis(triphenylphosphane)palladium(0) (C72H60P4Pd, 4.33 x 10 -4 mol) was dissolved in 20 ml anhydrous toluene under a stream of Ar gas. With stirring, 1.82 ml of 2-iodobiphenyl (C12H9I, 6.49 x 10 -4 mol) was added. The entire reaction was stirred under Ar gas at room temperature for six days. Small yellow crystals formed on the side of the round bottom flask after four days of slow evaporation of the toluene. The crystals slowly decomposed upon heating, being completely destroyed before reaching 150°C.

Refinement top

Hydrogen atoms were included in calculated positions with a C—H distance of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Di-µ-iodido-bis[(biphenyl-2-yl)(triphenylphosphane-κP)palladium(II)] top
Crystal data top
[Pd2(C12H9)2I2(C18H15P)2]F(000) = 1272
Mr = 1297.52Dx = 1.672 Mg m3
Monoclinic, P21/cMelting point: 423 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6957 (4) ÅCell parameters from 4701 reflections
b = 20.0969 (10) Åθ = 4.1–29.6°
c = 18.3718 (7) ŵ = 2.00 mm1
β = 133.962 (4)°T = 293 K
V = 2576.8 (2) Å3Block, yellow
Z = 20.25 × 0.18 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
6087 independent reflections
Radiation source: fine-focus sealed tube3783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.1790 pixels mm-1θmax = 28.3°, θmin = 4.3°
ω scansh = 1210
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2519
Tmin = 0.845, Tmax = 1.000l = 2423
12030 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.4388P]
where P = (Fo2 + 2Fc2)/3
6087 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.92 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Pd2(C12H9)2I2(C18H15P)2]V = 2576.8 (2) Å3
Mr = 1297.52Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6957 (4) ŵ = 2.00 mm1
b = 20.0969 (10) ÅT = 293 K
c = 18.3718 (7) Å0.25 × 0.18 × 0.12 mm
β = 133.962 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
6087 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3783 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 1.000Rint = 0.035
12030 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.134Δρmax = 1.92 e Å3
S = 1.02Δρmin = 0.77 e Å3
6087 reflectionsAbsolute structure: ?
298 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. Empirical absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis RED; Oxford Diffraction, 2009)

Hydrogen atoms were placed in calculated positions with C—H distances of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.79025 (6)0.05054 (2)0.37739 (3)0.04167 (15)
I11.16659 (5)0.06784 (2)0.53368 (3)0.05752 (17)
C10.7754 (8)0.1416 (4)0.3248 (4)0.0551 (17)
C20.8449 (9)0.1495 (4)0.2822 (5)0.067 (2)
H20.90400.11420.28010.081*
C30.8265 (13)0.2129 (6)0.2404 (6)0.088 (3)
H30.87580.21970.21210.106*
C40.7348 (15)0.2634 (5)0.2430 (7)0.100 (3)
H40.71770.30400.21350.120*
C50.6681 (12)0.2555 (4)0.2877 (6)0.083 (3)
H50.60880.29100.28950.099*
C60.6881 (9)0.1952 (3)0.3305 (5)0.0588 (18)
C70.6180 (11)0.1889 (4)0.3831 (6)0.068 (2)
C80.7372 (13)0.1662 (4)0.4818 (6)0.079 (2)
H80.86310.15490.51710.095*
C90.6734 (18)0.1603 (5)0.5279 (8)0.106 (3)
H90.75670.14550.59440.127*
C100.489 (2)0.1758 (6)0.4780 (12)0.119 (4)
H100.44380.16850.50860.143*
C110.3707 (18)0.2021 (6)0.3832 (11)0.112 (4)
H110.24780.21550.35120.134*
C120.4308 (12)0.2092 (5)0.3339 (8)0.092 (3)
H120.34920.22720.26910.110*
P30.4805 (2)0.03204 (8)0.23017 (10)0.0410 (4)
C130.4662 (8)0.0292 (3)0.1506 (4)0.0480 (15)
C140.6076 (11)0.0734 (4)0.1914 (6)0.071 (2)
H140.71460.07230.26070.085*
C150.5987 (12)0.1206 (4)0.1328 (7)0.086 (3)
H150.69770.15100.16270.103*
C160.4449 (14)0.1217 (5)0.0326 (7)0.086 (3)
H160.43690.15350.00710.104*
C170.3022 (14)0.0773 (5)0.0111 (6)0.093 (3)
H170.19760.07810.08080.112*
C180.3103 (11)0.0303 (4)0.0472 (5)0.080 (2)
H180.21140.00020.01680.097*
C190.3357 (8)0.0016 (3)0.2508 (4)0.0459 (14)
C200.1854 (10)0.0459 (4)0.1846 (5)0.0637 (19)
H200.16530.06460.13150.076*
C210.0680 (11)0.0617 (4)0.1982 (7)0.080 (2)
H210.03230.09140.15420.096*
C220.0958 (12)0.0342 (5)0.2767 (7)0.087 (3)
H220.01180.04420.28360.105*
C230.2466 (12)0.0077 (5)0.3437 (7)0.079 (2)
H230.26690.02550.39730.095*
C240.3684 (9)0.0237 (4)0.3323 (5)0.0603 (18)
H240.47270.05140.37890.072*
C250.3342 (8)0.1009 (3)0.1431 (4)0.0488 (15)
C260.1787 (10)0.1252 (4)0.1242 (6)0.075 (2)
H260.14250.10570.15480.090*
C270.0765 (12)0.1788 (5)0.0592 (7)0.097 (3)
H270.03030.19470.04490.116*
C280.1319 (12)0.2082 (5)0.0165 (7)0.089 (3)
H280.06750.24580.02340.107*
C290.2765 (12)0.1840 (4)0.0309 (6)0.080 (2)
H290.30820.20320.00190.097*
C300.3794 (10)0.1307 (4)0.0942 (5)0.068 (2)
H300.48130.11430.10420.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0298 (2)0.0497 (3)0.0306 (2)0.00165 (18)0.01537 (18)0.00405 (19)
I10.0344 (2)0.0661 (3)0.0443 (2)0.00152 (18)0.01692 (19)0.0123 (2)
C10.035 (3)0.065 (5)0.035 (3)0.013 (3)0.013 (3)0.002 (3)
C20.053 (4)0.087 (6)0.041 (4)0.005 (4)0.025 (3)0.011 (4)
C30.081 (6)0.118 (9)0.057 (5)0.021 (5)0.045 (5)0.010 (5)
C40.102 (7)0.092 (8)0.064 (5)0.038 (6)0.043 (6)0.008 (5)
C50.088 (6)0.052 (5)0.061 (5)0.008 (4)0.034 (5)0.006 (4)
C60.053 (4)0.042 (4)0.049 (4)0.007 (3)0.023 (3)0.003 (3)
C70.071 (5)0.050 (5)0.074 (5)0.003 (4)0.047 (5)0.012 (4)
C80.098 (6)0.075 (6)0.073 (5)0.003 (5)0.062 (5)0.008 (4)
C90.161 (11)0.092 (8)0.106 (8)0.002 (7)0.108 (9)0.007 (6)
C100.149 (12)0.107 (10)0.156 (12)0.014 (8)0.125 (11)0.031 (8)
C110.110 (9)0.109 (9)0.152 (11)0.009 (7)0.104 (9)0.040 (8)
C120.076 (6)0.078 (7)0.099 (7)0.003 (4)0.053 (6)0.020 (5)
P30.0330 (7)0.0439 (10)0.0318 (7)0.0029 (6)0.0172 (6)0.0024 (6)
C130.044 (3)0.047 (4)0.045 (3)0.000 (3)0.028 (3)0.008 (3)
C140.069 (5)0.075 (6)0.064 (5)0.007 (4)0.045 (4)0.008 (4)
C150.080 (6)0.091 (7)0.084 (6)0.010 (5)0.056 (5)0.015 (5)
C160.101 (7)0.092 (7)0.085 (6)0.006 (5)0.071 (6)0.027 (5)
C170.093 (7)0.112 (8)0.054 (5)0.004 (5)0.043 (5)0.023 (5)
C180.067 (5)0.088 (6)0.043 (4)0.012 (4)0.022 (4)0.015 (4)
C190.041 (3)0.044 (4)0.043 (3)0.002 (3)0.026 (3)0.004 (3)
C200.053 (4)0.066 (5)0.057 (4)0.011 (3)0.033 (4)0.004 (4)
C210.060 (5)0.085 (6)0.072 (5)0.022 (4)0.037 (4)0.006 (4)
C220.063 (5)0.116 (8)0.091 (6)0.013 (5)0.056 (5)0.008 (6)
C230.077 (5)0.101 (7)0.082 (5)0.001 (5)0.064 (5)0.001 (5)
C240.053 (4)0.068 (5)0.059 (4)0.010 (3)0.038 (4)0.014 (4)
C250.032 (3)0.051 (4)0.037 (3)0.001 (3)0.014 (3)0.003 (3)
C260.056 (4)0.075 (6)0.076 (5)0.019 (4)0.039 (4)0.020 (4)
C270.074 (6)0.104 (8)0.097 (7)0.047 (5)0.054 (6)0.040 (6)
C280.067 (5)0.076 (6)0.076 (6)0.023 (4)0.031 (5)0.030 (5)
C290.072 (5)0.075 (6)0.056 (4)0.001 (4)0.031 (4)0.023 (4)
C300.053 (4)0.077 (6)0.053 (4)0.007 (4)0.028 (4)0.020 (4)
Geometric parameters (Å, º) top
Pd1—C12.028 (7)C14—C151.392 (10)
Pd1—P32.2792 (14)C14—H140.9300
Pd1—I12.6709 (6)C15—C161.343 (11)
Pd1—I1i2.7486 (7)C15—H150.9300
I1—Pd1i2.7486 (7)C16—C171.347 (12)
C1—C21.349 (9)C16—H160.9300
C1—C61.417 (10)C17—C181.389 (11)
C2—C31.434 (12)C17—H170.9300
C2—H20.9300C18—H180.9300
C3—C41.372 (13)C19—C201.391 (9)
C3—H30.9300C19—C241.392 (8)
C4—C51.361 (12)C20—C211.362 (10)
C4—H40.9300C20—H200.9300
C5—C61.385 (10)C21—C221.384 (12)
C5—H50.9300C21—H210.9300
C6—C71.525 (10)C22—C231.366 (12)
C7—C81.386 (11)C22—H220.9300
C7—C121.414 (10)C23—C241.374 (9)
C8—C91.356 (11)C23—H230.9300
C8—H80.9300C24—H240.9300
C9—C101.366 (14)C25—C261.380 (9)
C9—H90.9300C25—C301.380 (9)
C10—C111.362 (15)C26—C271.389 (11)
C10—H100.9300C26—H260.9300
C11—C121.385 (13)C27—C281.354 (11)
C11—H110.9300C27—H270.9300
C12—H120.9300C28—C291.326 (11)
P3—C191.821 (6)C28—H280.9300
P3—C251.827 (6)C29—C301.373 (10)
P3—C131.842 (6)C29—H290.9300
C13—C141.342 (9)C30—H300.9300
C13—C181.381 (9)
C1—Pd1—P389.00 (16)C13—C14—C15121.9 (8)
C1—Pd1—I189.25 (16)C13—C14—H14119.1
P3—Pd1—I1171.22 (4)C15—C14—H14119.1
C1—Pd1—I1i174.70 (18)C16—C15—C14119.1 (8)
P3—Pd1—I1i95.49 (4)C16—C15—H15120.5
I1—Pd1—I1i86.730 (18)C14—C15—H15120.5
Pd1—I1—Pd1i93.270 (18)C15—C16—C17120.6 (8)
C2—C1—C6121.2 (7)C15—C16—H16119.7
C2—C1—Pd1118.9 (6)C17—C16—H16119.7
C6—C1—Pd1119.9 (5)C16—C17—C18120.4 (8)
C1—C2—C3119.2 (8)C16—C17—H17119.8
C1—C2—H2120.4C18—C17—H17119.8
C3—C2—H2120.4C13—C18—C17119.6 (7)
C4—C3—C2118.7 (8)C13—C18—H18120.2
C4—C3—H3120.6C17—C18—H18120.2
C2—C3—H3120.6C20—C19—C24119.5 (6)
C5—C4—C3121.8 (9)C20—C19—P3123.1 (5)
C5—C4—H4119.1C24—C19—P3117.1 (5)
C3—C4—H4119.1C21—C20—C19119.3 (7)
C4—C5—C6120.4 (9)C21—C20—H20120.3
C4—C5—H5119.8C19—C20—H20120.3
C6—C5—H5119.8C20—C21—C22121.0 (7)
C5—C6—C1118.6 (7)C20—C21—H21119.5
C5—C6—C7119.0 (7)C22—C21—H21119.5
C1—C6—C7122.4 (6)C23—C22—C21119.9 (8)
C8—C7—C12117.8 (8)C23—C22—H22120.1
C8—C7—C6121.5 (7)C21—C22—H22120.1
C12—C7—C6120.6 (8)C22—C23—C24120.1 (8)
C9—C8—C7121.2 (9)C22—C23—H23120.0
C9—C8—H8119.4C24—C23—H23120.0
C7—C8—H8119.4C23—C24—C19120.1 (7)
C8—C9—C10121.0 (11)C23—C24—H24120.0
C8—C9—H9119.5C19—C24—H24120.0
C10—C9—H9119.5C26—C25—C30118.0 (6)
C11—C10—C9119.5 (12)C26—C25—P3122.5 (5)
C11—C10—H10120.3C30—C25—P3119.6 (5)
C9—C10—H10120.3C25—C26—C27119.5 (8)
C10—C11—C12121.1 (11)C25—C26—H26120.2
C10—C11—H11119.5C27—C26—H26120.2
C12—C11—H11119.5C28—C27—C26120.2 (8)
C11—C12—C7119.2 (10)C28—C27—H27119.9
C11—C12—H12120.4C26—C27—H27119.9
C7—C12—H12120.4C29—C28—C27121.0 (8)
C19—P3—C25102.8 (3)C29—C28—H28119.5
C19—P3—C13105.9 (3)C27—C28—H28119.5
C25—P3—C13103.1 (3)C28—C29—C30120.1 (8)
C19—P3—Pd1112.63 (19)C28—C29—H29119.9
C25—P3—Pd1119.9 (2)C30—C29—H29119.9
C13—P3—Pd1111.23 (19)C29—C30—C25121.1 (7)
C14—C13—C18118.5 (7)C29—C30—H30119.5
C14—C13—P3120.9 (5)C25—C30—H30119.5
C18—C13—P3120.6 (5)
Symmetry code: (i) x+2, y, z+1.
Acknowledgements top

This research was funded by a CCSU–AAUP research grant.

references
References top

Grushin, V. V. & Alper, H. (1993). Organometallics, 12, 1890–1901.

Lang, H., Taher, D., Walfort, B. & Pritzkow, H. (2006). J. Organomet. Chem. 691, 3834–3845.

Marshall, W. J., Young, R. J. & Grushin, V. V. (2001). Organometallics, 20, 523–533.

Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.