organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Di­nitro­azetidinium chloride

aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000 Shaanxi, People's Republic of China, and bSchool of Chemical Engineering, Northwest University, Xi'an 710069 Shaanxi, People's Republic of China
*Correspondence e-mail: donghuhai@qq.com

(Received 29 October 2012; accepted 9 November 2012; online 17 November 2012)

In the title gem-dinitro­azetidinium chloride salt, C3H6N3O4+·Cl, the cations and anions lie on a mirror plane. The azetidine ring is virtually planar, with a mean deviation from the plane of 0.0569 Å. The dihedral angle between the two nitro groups is 90.00 (5)°. In the crystal, the ions are linked by N—H⋯Cl interactions, forming a chain along the c-axis direction, and C—H⋯O inter­actions, forming a layer parallel to (010).

Related literature

For 1,3,3-trinitro­azetidine and compounds prepared from its derivative 3,3-dinitro­azetidine, see: Archibald et al. (1990[Archibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920-2924.]); Hiskey et al. (1992[Hiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J. Heterocycl. Chem. 29, 1855-1856.]); Ma et al. (2009a[Ma, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009a). J. Hazard. Mater. 169, 1068-1073.],b[Ma, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009b). J. Therm. Anal. Calorim. 95, 437-444.], 2011[Ma, H. X., Yan, B., Ren, Y. H., Guan, Y. L., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2011). J. Therm. Anal. Calorim. 103, 569-575.]); Yan et al. (2009[Yan, B., Ma, H.-X., Hu, Y., Guan, Y.-L. & Song, J.-R. (2009). Acta Cryst. E65, o3215.], 2010[Yan, B., Ma, H.-X., Li, J.-F., Guan, Y.-L. & Song, J.-R. (2010). Acta Cryst. E66, o57.]); Gao et al. (2009[Gao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577-582.]). For related structures, see: Gao et al. (2010[Gao, R., Yan, B., Mai, T., Hu, Y. & Guan, Y.-L. (2010). Acta Cryst. E66, o3036.]); Ma et al. (2010[Ma, H. X., Yan, B., Li, J. F., Ren, Y. H., Chen, Y. S., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2010). J. Mol. Struct. 981, 103-110.]). For the synthesis, see: Li et al. (2004[Li, H. Z., Shu, Y. J., Huang, Y. G., Liu, S. J. & Jiang, Q. (2004). Chin. J. Org. Chem. 24, 775-777.]).

[Scheme 1]

Experimental

Crystal data
  • C3H6N3O4+·Cl

  • Mr = 183.56

  • Orthorhombic, C m c 21

  • a = 6.6807 (17) Å

  • b = 10.4409 (17) Å

  • c = 9.9707 (19) Å

  • V = 695.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.35 × 0.34 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS . University of Göttingen, Germany.]) Tmin = 0.839, Tmax = 0.860

  • 1968 measured reflections

  • 708 independent reflections

  • 696 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.055

  • S = 1.10

  • 708 reflections

  • 62 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 252 Friedel pairs

  • Flack parameter: 0.09 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl 0.90 2.35 3.087 (2) 139
N1—H1D⋯Cli 0.90 2.19 3.0575 (19) 163
C1—H1B⋯O4ii 0.97 2.58 3.543 (2) 172
Symmetry codes: (i) [-x, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dinitro- and trinitro-derivatives of azetidine are of interest because they contain strained ring systems. This makes them good candidates for energetic materials (propellants or explosives). Azetidine-based explosives, such as 1,3,3-trinitroazetidine (TNAZ) (Archibald et al., 1990) demonstrate excellent performance partly because of the high strain associated with the four-membered ring. As one of the important derivates of TNAZ, 3,3-dinitroazetidine (DNAZ) (Hiskey et al., 1992) can prepare a variety of solid energetic materials with high oxygen-balance (Ma et al., 2009a; Ma et al., 2009b; Yan et al., 2009; Gao et al., 2009; Yan et al., 2010; Ma et al., 2010; Gao et al., 2010; Ma et al., 2011). This paper reports the crystal structure of the title DNAZ salt, C3H6N3O4+.Cl-.

In the title dinitroazetidinium chloride salt, cations and anions lie on a mirror plane. The azetidine ring is virtually planar, with a mean deviation from the plane of 0.0569 Å. The dihedral angle between the two nitro groups is 90.00 (5)°. In the crystal, the ions are linked by N–H···Cl and C–H···O interactions.

Related literature top

For 1,3,3-trinitroazetidine and compounds prepared from its derivative 3,3-dinitroazetidine, see: Archibald et al. (1990); Hiskey et al. (1992); Ma et al. (2009a,b, 2011); Yan et al. (2009, 2010); Gao et al. (2009). For related structures, see: Gao et al. (2010); Ma et al. (2010). For the synthesis, see: Li et al. (2004).

Experimental top

The title compound was synthesized and purified by a reported method (Li et al., 2004). The compound was then dissolved in water and colorless crystals were isolated after 1 d.

Elemental analysis calculated for C3H6N3O4Cl: C 19.63, N 22.89, H 3.29%; found: C 19.74, N 23.10, H 3.19%.

IR (KBr, cm-1): 3057, 2623, 1588, 1406, 1333, 850, 808.

Refinement top

H atoms were placed at calculated idealized positions and refined using a riding model, with C—H = 0.97 Å and N—H = 0.90 Å [and Uiso(H) = 1.2Ueq(C,N)].

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as spheres of arbitrary radius.
3,3-Dinitroazetidinium chloride top
Crystal data top
C3H6N3O4+·ClZ = 4
Mr = 183.56F(000) = 376
Orthorhombic, Cmc21Dx = 1.753 Mg m3
Hall symbol: C 2c -2Mo Kα radiation, λ = 0.71073 Å
a = 6.6807 (17) ŵ = 0.52 mm1
b = 10.4409 (17) ÅT = 293 K
c = 9.9707 (19) ÅBlock, colourless
V = 695.5 (2) Å30.35 × 0.34 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
708 independent reflections
Radiation source: fine-focus sealed tube696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 27.9°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 88
Tmin = 0.839, Tmax = 0.860k = 1312
1968 measured reflectionsl = 1113
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.199P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.18 e Å3
708 reflectionsΔρmin = 0.16 e Å3
62 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.227 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 252 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.09 (7)
Crystal data top
C3H6N3O4+·ClV = 695.5 (2) Å3
Mr = 183.56Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 6.6807 (17) ŵ = 0.52 mm1
b = 10.4409 (17) ÅT = 293 K
c = 9.9707 (19) Å0.35 × 0.34 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
708 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
696 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.860Rint = 0.019
1968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.18 e Å3
S = 1.10Δρmin = 0.16 e Å3
708 reflectionsAbsolute structure: Flack (1983), 252 Friedel pairs
62 parametersAbsolute structure parameter: 0.09 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.00000.34257 (4)0.24339 (6)0.03211 (19)
N20.00000.14030 (15)0.5026 (2)0.0277 (4)
O30.00000.07128 (19)0.7449 (3)0.0571 (6)
C10.1613 (2)0.35120 (12)0.57848 (17)0.0255 (3)
H1A0.23050.37730.65960.031*
H1B0.25570.32930.50810.031*
N30.00000.1881 (2)0.7388 (3)0.0354 (4)
N10.00000.44299 (15)0.5346 (2)0.0269 (4)
H1C0.00000.45810.44570.032*
H1D0.00000.51700.58080.032*
O40.00000.2614 (3)0.8318 (2)0.0536 (6)
O10.16253 (18)0.10036 (10)0.46749 (16)0.0425 (4)
C20.00000.24966 (18)0.6017 (2)0.0217 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0359 (3)0.0347 (3)0.0258 (3)0.0000.0000.0048 (3)
N20.0314 (9)0.0207 (8)0.0309 (11)0.0000.0000.0002 (7)
O30.0562 (12)0.0522 (10)0.0629 (14)0.0000.0000.0373 (12)
C10.0226 (7)0.0236 (7)0.0304 (8)0.0015 (5)0.0008 (6)0.0013 (5)
N30.0232 (8)0.0556 (11)0.0273 (9)0.0000.0000.0133 (13)
N10.0323 (10)0.0202 (7)0.0283 (9)0.0000.0000.0012 (7)
O40.0463 (12)0.0904 (16)0.0240 (9)0.0000.0000.0017 (9)
O10.0365 (7)0.0362 (6)0.0549 (9)0.0117 (4)0.0002 (7)0.0136 (6)
C20.0218 (9)0.0215 (9)0.0217 (11)0.0000.0000.0007 (7)
Geometric parameters (Å, º) top
N2—O1i1.2147 (14)C1—H1B0.9700
N2—O11.2147 (14)N3—O41.203 (4)
N2—C21.510 (3)N3—C21.511 (3)
O3—N31.221 (3)N1—C1i1.5073 (19)
C1—N11.5073 (18)N1—H1C0.9000
C1—C21.5294 (19)N1—H1D0.9000
C1—H1A0.9700C2—C1i1.5294 (19)
O1i—N2—O1126.74 (19)O4—N3—C2115.2 (2)
O1i—N2—C2116.63 (9)O3—N3—C2118.0 (3)
O1—N2—C2116.63 (9)C1—N1—C1i91.30 (15)
N1—C1—C288.89 (11)C1—N1—H1C113.4
N1—C1—H1A113.8C1—N1—H1D113.4
C2—C1—H1A113.8H1C—N1—H1D110.7
N1—C1—H1B113.8N2—C2—N3105.67 (17)
C2—C1—H1B113.8N2—C2—C1115.17 (13)
H1A—C1—H1B111.1N3—C2—C1115.58 (13)
O4—N3—O3126.7 (3)C1—C2—C1i89.62 (15)
C2—C1—N1—C1i8.66 (17)O3—N3—C2—N20.0
O1i—N2—C2—N389.58 (16)O4—N3—C2—C151.39 (11)
O1—N2—C2—N389.58 (16)O3—N3—C2—C1128.61 (11)
O1i—N2—C2—C1141.56 (16)O4—N3—C2—C1i51.39 (11)
O1—N2—C2—C139.3 (2)O3—N3—C2—C1i128.61 (11)
O1i—N2—C2—C1i39.3 (2)N1—C1—C2—N2109.30 (15)
O1—N2—C2—C1i141.56 (16)N1—C1—C2—N3126.93 (15)
O4—N3—C2—N2180.0N1—C1—C2—C1i8.53 (17)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl0.902.353.087 (2)139
N1—H1D···Clii0.902.193.0575 (19)163
C1—H1B···O10.972.502.8432 (19)100
C1—H1B···O4iii0.972.583.543 (2)172
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC3H6N3O4+·Cl
Mr183.56
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)293
a, b, c (Å)6.6807 (17), 10.4409 (17), 9.9707 (19)
V3)695.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.35 × 0.34 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.839, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
1968, 708, 696
Rint0.019
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.10
No. of reflections708
No. of parameters62
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16
Absolute structureFlack (1983), 252 Friedel pairs
Absolute structure parameter0.09 (7)

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl0.902.353.087 (2)139
N1—H1D···Cli0.902.193.0575 (19)163
C1—H1B···O4ii0.972.583.543 (2)172
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant No. 21073141), the Education Committee Foundation of Shaanxi Province (grant Nos. 11 JK0564 and 11J K0582) and the Project sponsored by SRF for AT, YLU (No. 09GK019) for generously supporting this study.

References

First citationArchibald, T. G., Gilardi, R., Baum, K. & George, C. (1990). J. Org. Chem. 55, 2920–2924.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, R., Ma, H. X., Yan, B., Song, J. R. & Wang, Y. H. (2009). Chem. J. Chin. Univ. 30, 577–582.  CAS Google Scholar
First citationGao, R., Yan, B., Mai, T., Hu, Y. & Guan, Y.-L. (2010). Acta Cryst. E66, o3036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHiskey, M. A., Coburn, M. D., Mitchell, M. A. & Benicewicz, B. C. (1992). J. Heterocycl. Chem. 29, 1855–1856.  CrossRef CAS Google Scholar
First citationLi, H. Z., Shu, Y. J., Huang, Y. G., Liu, S. J. & Jiang, Q. (2004). Chin. J. Org. Chem. 24, 775–777.  CAS Google Scholar
First citationMa, H. X., Yan, B., Li, Z. N., Guan, Y. L., Song, J. R., Xu, K. Z. & Hu, R. Z. (2009a). J. Hazard. Mater. 169, 1068–1073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, H. X., Yan, B., Li, J. F., Ren, Y. H., Chen, Y. S., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2010). J. Mol. Struct. 981, 103–110.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, H. X., Yan, B., Li, Z. N., Song, J. R. & Hu, R. Z. (2009b). J. Therm. Anal. Calorim. 95, 437–444.  Web of Science CrossRef CAS Google Scholar
First citationMa, H. X., Yan, B., Ren, Y. H., Guan, Y. L., Zhao, F. Q., Song, J. R. & Hu, R. Z. (2011). J. Therm. Anal. Calorim. 103, 569–575.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS . University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, B., Ma, H.-X., Hu, Y., Guan, Y.-L. & Song, J.-R. (2009). Acta Cryst. E65, o3215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, B., Ma, H.-X., Li, J.-F., Guan, Y.-L. & Song, J.-R. (2010). Acta Cryst. E66, o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds