supplementary materials


zq2190 scheme

Acta Cryst. (2012). E68, m1565-m1566    [ doi:10.1107/S1600536812048222 ]

Di-[mu]-chlorido-bis({8-[bis(naphthalen-1-yl)phosphanyl]naphthalen-1-yl-[kappa]2C1,P}palladium(II)) dichloromethane disolvate

W. L. Davis and A. Muller

Abstract top

The title compound, [Pd2{P(C10H7)2(C10H6)}2Cl2]·2CH2Cl2, shows cyclometalation of one naphthalen-1-yl substituent of each of the phosphane ligands to the Pd dimer in a trans orientation; the complete dimer is generated by a centre of inversion. Two dichloromethane solvent molecules create C-H...Cl interactions with the metal complex, generating supermolecular layers in the ab plane. Additional C-H...[pi] and [pi]-[pi] [centroid-centroid distances = 3.713 (3), 3.850 (4) and 3.926 (3) Å] interactions join these planes into a three-dimensional supermolecular network.

Comment top

In the past few decades, phosphapalladacycles have attracted extensive attention due to their activity as catalysts in C—C bond formation scenarios (Dunina et al., 2008, 2009; Bedford et al., 2004; Morales-Morales et al., 2002). [PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. Reported here is the product of the reaction between tris(naphthalen-1-yl)phosphane and [PdCl2(COD)], which shows dimerization of the PdII metal as well as chelation of one naphthalen-1-yl substituent of each of the phosphane ligands to the Pd dimer.

The title compound (Fig.1) crystallizes in the triclinic space group P1 (Z = 1), situated around an inversion centre and accompanied by two dichloromethane solvate molecules in the unit cell. The coordination centre for each PdII centre is distorted due to the strained five membered chelation of the naphthalen-1-yl ligand to each metal centre in a trans orientation. This distortion is noted most prominently in the displacement of the P and C donor atoms from the plane formed by the Pd and bridged Cl atoms (C3 and P1 displaced 0.2811 (4) and -0.2508 (12) Å, respectively).

Crystal packing reveals a 2-dimentional network generated by C—H···Cl interactions between the cyclo-metalated Pd complex and the dichloromethane solvates (see Fig. 2, table 1). In addition to the above several C—H···π interactions (see Fig. 3, table 1) and ππ stacking (see Fig. 4; centroid to centroid distances = 3.713 (3), 3.850 (4), 3.926 (3) Å) are observed, linking the 2-dimentional layers into 3-dimentional network.

Related literature top

For background to palladium compounds in catalysis, see: Dunina et al. (2008, 2009); Bedford et al. (2004); Morales-Morales et al. (2002). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Experimental top

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). Tris(naphthalen-1-yl)phosphane (15 mg, 0.036 mmol) was dissolved in CH2Cl2 (5 cm3). A solution of [Pd(COD)Cl2] (5.2 mg, 0.018 mmol) in CH2Cl2 (5 cm3) was added to the phosphane solution. The mixture was stirred for 6hr at room temperature, after which the solution was left to slowly evaporate giving a yellow powder in 65% yield. Yellow crystals of the title compound suitable for a single-crystal X-ray study were obtained after recrystallization from a CH2Cl2/DMSO solution.

31P NMR (CDCl3, 162.0 MHz): δ (p.p.m.) 24.91 (s, 1P).

FTIR (cm-1):2199, 2162, 1712, 1630, 1560, 1507, 1252, 1165, 1043, 929, 794, 769, 720, 668, 622.

Refinement top

The aromatic and methylene H atoms were placed in geometrically idealized positions (C—H = 0.95 and 0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The deepest residual electron-density hole (-2.36 e.Å3) is located at 0.7 Å from C31 and the highest peak (1.59 e.Å3) 1.12 Å from Cl3, both associated with the solvate molecule and representing no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids (H atoms omitted for clarity). Accented lettering indicate atoms generated by symmetry code i = 1-x, -y, 1-z.
[Figure 2] Fig. 2. Packing diagram showing the 2-dimentional network generated by C—H···Cl interactions (indicated by red dashed lines) between the metal complex and the dichloromethane solvates (H atoms not involved in interactions are omitted for clarity).
[Figure 3] Fig. 3. Packing diagram showing the C—H···π interactions (indicated by red dashed lines). H atoms not involved in interactions are omitted for clarity.
[Figure 4] Fig. 4. Packing diagram showing the ππ interactions (indicated by red dashed lines). H atoms are omitted for clarity.
Di-µ-chlorido-bis({8-[bis(naphthalen-1-yl)phosphanyl]naphthalen-1-yl- κ2C1,P}palladium(II)) dichloromethane disolvate top
Crystal data top
[Pd2(C30H20P)2Cl2]·2CH2Cl2Z = 1
Mr = 1276.41F(000) = 640
Triclinic, P1Dx = 1.651 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4823 (8) ÅCell parameters from 9967 reflections
b = 11.4272 (9) Åθ = 2.3–28.4°
c = 12.343 (1) ŵ = 1.12 mm1
α = 80.652 (2)°T = 100 K
β = 76.592 (2)°Needle, yellow
γ = 89.013 (2)°0.33 × 0.13 × 0.13 mm
V = 1283.42 (18) Å3
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
6340 independent reflections
Radiation source: sealed tube5675 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.4 pixels mm-1θmax = 28.4°, θmin = 1.7°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1515
Tmin = 0.709, Tmax = 0.868l = 1616
40200 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0813P)2 + 7.0269P]
where P = (Fo2 + 2Fc2)/3
6340 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 1.59 e Å3
0 restraintsΔρmin = 2.36 e Å3
Crystal data top
[Pd2(C30H20P)2Cl2]·2CH2Cl2γ = 89.013 (2)°
Mr = 1276.41V = 1283.42 (18) Å3
Triclinic, P1Z = 1
a = 9.4823 (8) ÅMo Kα radiation
b = 11.4272 (9) ŵ = 1.12 mm1
c = 12.343 (1) ÅT = 100 K
α = 80.652 (2)°0.33 × 0.13 × 0.13 mm
β = 76.592 (2)°
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
6340 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5675 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.868Rint = 0.030
40200 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.154Δρmax = 1.59 e Å3
S = 1.07Δρmin = 2.36 e Å3
6340 reflectionsAbsolute structure: ?
325 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 3976 frames were collected with a frame width of 0.5° covering up to θ = 28.38° with 98.6% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.48238 (3)0.07664 (2)0.36232 (2)0.01412 (11)
P10.37614 (12)0.23315 (9)0.28438 (8)0.0156 (2)
Cl10.42468 (11)0.10775 (9)0.55808 (8)0.0192 (2)
Cl20.0088 (5)0.7412 (4)0.0879 (3)0.1348 (16)
Cl30.1322 (4)0.5129 (4)0.0838 (4)0.1423 (16)
C30.5601 (5)0.0555 (4)0.2007 (4)0.0222 (9)
C20.5448 (6)0.1477 (4)0.1105 (4)0.0252 (9)
C10.4615 (5)0.2484 (4)0.1354 (4)0.0230 (9)
C210.1836 (5)0.1992 (4)0.2977 (4)0.0181 (8)
C300.0811 (5)0.1809 (3)0.4047 (3)0.0179 (8)
C250.0606 (5)0.1358 (4)0.4107 (4)0.0212 (8)
C240.0963 (6)0.1117 (4)0.3107 (4)0.0278 (10)
H240.18990.08060.31440.033*
C230.0024 (6)0.1326 (4)0.2095 (4)0.0272 (10)
H230.02370.11780.1430.033*
C220.1425 (5)0.1759 (4)0.2030 (4)0.0234 (9)
H220.21030.18930.1320.028*
C260.1636 (5)0.1163 (4)0.5160 (4)0.0271 (10)
H260.25820.08740.51940.033*
C270.1295 (5)0.1381 (4)0.6122 (4)0.0272 (10)
H270.19910.12330.68220.033*
C280.0099 (5)0.1829 (4)0.6070 (4)0.0243 (9)
H280.03360.19830.67420.029*
C290.1120 (5)0.2047 (4)0.5068 (4)0.0197 (8)
H290.20460.23610.50540.024*
C110.3889 (5)0.3794 (3)0.3228 (3)0.0183 (8)
C200.5266 (5)0.4266 (4)0.3270 (3)0.0199 (8)
C190.6584 (5)0.3643 (4)0.3056 (4)0.0249 (9)
H190.65750.28620.28850.03*
C180.7875 (6)0.4152 (4)0.3092 (5)0.0324 (11)
H180.87410.37150.29540.039*
C170.7928 (6)0.5312 (5)0.3332 (5)0.0340 (11)
H170.88260.56580.33450.041*
C160.6669 (6)0.5941 (4)0.3549 (4)0.0277 (10)
H160.67050.67220.37140.033*
C150.5323 (6)0.5443 (4)0.3528 (4)0.0227 (9)
C140.4021 (6)0.6095 (4)0.3743 (4)0.0252 (9)
H140.40530.68670.3930.03*
C130.2732 (6)0.5630 (4)0.3684 (4)0.0260 (9)
H130.18780.60830.38220.031*
C120.2659 (5)0.4472 (4)0.3418 (4)0.0227 (9)
H120.17570.4160.3370.027*
C100.4477 (6)0.3402 (4)0.0525 (4)0.0314 (11)
H100.3930.40750.07120.038*
C90.5155 (8)0.3341 (5)0.0616 (4)0.0399 (14)
H90.50630.39750.11960.048*
C80.5943 (9)0.2369 (5)0.0882 (4)0.0468 (16)
H80.63750.23320.16510.056*
C70.6129 (7)0.1420 (5)0.0042 (4)0.0373 (13)
C60.6978 (9)0.0412 (6)0.0281 (4)0.0526 (19)
H60.74440.03510.10390.063*
C50.7122 (9)0.0463 (6)0.0572 (5)0.0504 (18)
H50.77010.11250.04020.061*
C40.6423 (6)0.0409 (5)0.1719 (4)0.0323 (11)
H40.65220.10450.22930.039*
C310.1100 (14)0.6358 (15)0.0065 (11)0.116 (5)
H31A0.05790.61980.05060.139*
H31B0.20610.67110.03410.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01857 (17)0.01053 (16)0.01332 (16)0.00039 (11)0.00303 (11)0.00303 (10)
P10.0217 (5)0.0111 (4)0.0135 (4)0.0009 (4)0.0031 (4)0.0021 (3)
Cl10.0273 (5)0.0162 (4)0.0152 (4)0.0083 (4)0.0056 (4)0.0051 (3)
Cl20.137 (3)0.177 (4)0.0702 (17)0.055 (3)0.0036 (18)0.004 (2)
Cl30.098 (2)0.131 (3)0.182 (4)0.005 (2)0.037 (3)0.026 (3)
C30.033 (2)0.0179 (19)0.0147 (18)0.0011 (17)0.0013 (16)0.0054 (15)
C20.037 (3)0.020 (2)0.0160 (19)0.0006 (18)0.0004 (17)0.0045 (16)
C10.033 (2)0.0167 (19)0.0162 (18)0.0011 (17)0.0009 (16)0.0023 (15)
C210.021 (2)0.0132 (17)0.0208 (19)0.0030 (15)0.0060 (15)0.0036 (14)
C300.022 (2)0.0120 (17)0.0199 (18)0.0023 (15)0.0063 (15)0.0021 (14)
C250.021 (2)0.0129 (18)0.030 (2)0.0025 (15)0.0073 (17)0.0042 (16)
C240.029 (2)0.020 (2)0.040 (3)0.0016 (18)0.017 (2)0.0067 (18)
C230.037 (3)0.023 (2)0.029 (2)0.0030 (19)0.019 (2)0.0101 (18)
C220.033 (2)0.020 (2)0.0189 (19)0.0044 (18)0.0092 (17)0.0065 (16)
C260.021 (2)0.018 (2)0.039 (3)0.0015 (16)0.0007 (18)0.0025 (18)
C270.026 (2)0.020 (2)0.029 (2)0.0052 (17)0.0047 (18)0.0029 (17)
C280.030 (2)0.020 (2)0.022 (2)0.0069 (17)0.0052 (17)0.0054 (16)
C290.022 (2)0.0166 (18)0.0212 (19)0.0023 (15)0.0053 (16)0.0060 (15)
C110.029 (2)0.0115 (17)0.0139 (17)0.0004 (15)0.0051 (15)0.0019 (13)
C200.031 (2)0.0129 (18)0.0161 (18)0.0007 (16)0.0056 (16)0.0024 (14)
C190.031 (2)0.0147 (19)0.030 (2)0.0002 (17)0.0086 (18)0.0056 (16)
C180.033 (3)0.022 (2)0.043 (3)0.001 (2)0.010 (2)0.006 (2)
C170.038 (3)0.023 (2)0.045 (3)0.005 (2)0.016 (2)0.006 (2)
C160.043 (3)0.0158 (19)0.028 (2)0.0017 (19)0.014 (2)0.0059 (17)
C150.040 (3)0.0112 (17)0.0172 (18)0.0013 (17)0.0083 (17)0.0014 (14)
C140.042 (3)0.0126 (18)0.021 (2)0.0024 (18)0.0071 (18)0.0038 (15)
C130.037 (3)0.0133 (19)0.027 (2)0.0066 (17)0.0046 (19)0.0042 (16)
C120.033 (2)0.0147 (19)0.0203 (19)0.0017 (17)0.0056 (17)0.0025 (15)
C100.051 (3)0.018 (2)0.021 (2)0.005 (2)0.002 (2)0.0014 (17)
C90.071 (4)0.025 (2)0.017 (2)0.000 (3)0.002 (2)0.0041 (18)
C80.083 (5)0.030 (3)0.018 (2)0.007 (3)0.003 (3)0.001 (2)
C70.060 (4)0.030 (3)0.015 (2)0.007 (2)0.003 (2)0.0045 (18)
C60.088 (5)0.045 (3)0.015 (2)0.025 (3)0.006 (3)0.007 (2)
C50.084 (5)0.040 (3)0.023 (2)0.027 (3)0.001 (3)0.014 (2)
C40.049 (3)0.030 (2)0.017 (2)0.013 (2)0.005 (2)0.0074 (18)
C310.095 (9)0.176 (14)0.092 (8)0.047 (9)0.043 (7)0.044 (9)
Geometric parameters (Å, º) top
Pd1—C32.013 (4)C11—C121.385 (6)
Pd1—P12.2288 (10)C11—C201.436 (6)
Pd1—Cl1i2.4180 (10)C20—C191.420 (6)
Pd1—Cl12.4337 (10)C20—C151.435 (6)
P1—C11.811 (4)C19—C181.377 (7)
P1—C111.823 (4)C19—H190.95
P1—C211.838 (4)C18—C171.408 (7)
Cl1—Pd1i2.4180 (10)C18—H180.95
Cl2—C311.813 (14)C17—C161.378 (8)
Cl3—C311.604 (15)C17—H170.95
C3—C41.384 (6)C16—C151.414 (7)
C3—C21.435 (6)C16—H160.95
C2—C11.419 (6)C15—C141.425 (7)
C2—C71.424 (6)C14—C131.363 (7)
C1—C101.368 (6)C14—H140.95
C21—C221.380 (6)C13—C121.420 (6)
C21—C301.433 (6)C13—H130.95
C30—C291.426 (6)C12—H120.95
C30—C251.429 (6)C10—C91.418 (7)
C25—C261.421 (6)C10—H100.95
C25—C241.422 (7)C9—C81.370 (8)
C24—C231.365 (7)C9—H90.95
C24—H240.95C8—C71.413 (8)
C23—C221.406 (7)C8—H80.95
C23—H230.95C7—C61.425 (8)
C22—H220.95C6—C51.359 (8)
C26—C271.362 (7)C6—H60.95
C26—H260.95C5—C41.428 (7)
C27—C281.409 (7)C5—H50.95
C27—H270.95C4—H40.95
C28—C291.372 (6)C31—H31A0.99
C28—H280.95C31—H31B0.99
C29—H290.95
C3—Pd1—P183.19 (13)C19—C20—C15117.8 (4)
C3—Pd1—Cl1i95.05 (13)C19—C20—C11123.8 (4)
P1—Pd1—Cl1i173.01 (4)C15—C20—C11118.4 (4)
C3—Pd1—Cl1171.70 (15)C18—C19—C20121.1 (4)
P1—Pd1—Cl1100.16 (3)C18—C19—H19119.5
Cl1i—Pd1—Cl182.51 (3)C20—C19—H19119.5
C1—P1—C11105.94 (19)C19—C18—C17120.9 (5)
C1—P1—C21106.2 (2)C19—C18—H18119.5
C11—P1—C21107.83 (19)C17—C18—H18119.5
C1—P1—Pd1103.99 (15)C16—C17—C18119.6 (5)
C11—P1—Pd1121.53 (14)C16—C17—H17120.2
C21—P1—Pd1110.23 (13)C18—C17—H17120.2
Pd1i—Cl1—Pd197.49 (3)C17—C16—C15121.0 (4)
C4—C3—C2117.3 (4)C17—C16—H16119.5
C4—C3—Pd1122.1 (3)C15—C16—H16119.5
C2—C3—Pd1120.2 (3)C16—C15—C14121.1 (4)
C1—C2—C7118.6 (4)C16—C15—C20119.6 (4)
C1—C2—C3119.6 (4)C14—C15—C20119.3 (5)
C7—C2—C3121.7 (4)C13—C14—C15121.0 (4)
C10—C1—C2121.6 (4)C13—C14—H14119.5
C10—C1—P1127.1 (4)C15—C14—H14119.5
C2—C1—P1111.2 (3)C14—C13—C12120.4 (4)
C22—C21—C30119.6 (4)C14—C13—H13119.8
C22—C21—P1117.7 (3)C12—C13—H13119.8
C30—C21—P1122.1 (3)C11—C12—C13120.6 (5)
C29—C30—C25117.5 (4)C11—C12—H12119.7
C29—C30—C21123.9 (4)C13—C12—H12119.7
C25—C30—C21118.7 (4)C1—C10—C9119.6 (5)
C26—C25—C24121.0 (4)C1—C10—H10120.2
C26—C25—C30119.7 (4)C9—C10—H10120.2
C24—C25—C30119.3 (4)C8—C9—C10120.0 (5)
C23—C24—C25120.7 (5)C8—C9—H9120
C23—C24—H24119.6C10—C9—H9120
C25—C24—H24119.6C9—C8—C7121.7 (5)
C24—C23—C22120.3 (4)C9—C8—H8119.2
C24—C23—H23119.8C7—C8—H8119.2
C22—C23—H23119.8C8—C7—C2118.5 (5)
C21—C22—C23121.3 (4)C8—C7—C6123.3 (5)
C21—C22—H22119.3C2—C7—C6118.2 (5)
C23—C22—H22119.3C5—C6—C7120.1 (5)
C27—C26—C25121.3 (5)C5—C6—H6119.9
C27—C26—H26119.4C7—C6—H6119.9
C25—C26—H26119.4C6—C5—C4121.5 (5)
C26—C27—C28119.5 (4)C6—C5—H5119.3
C26—C27—H27120.3C4—C5—H5119.3
C28—C27—H27120.3C3—C4—C5121.1 (5)
C29—C28—C27121.2 (4)C3—C4—H4119.4
C29—C28—H28119.4C5—C4—H4119.4
C27—C28—H28119.4Cl3—C31—Cl2112.5 (8)
C28—C29—C30121.0 (4)Cl3—C31—H31A109.1
C28—C29—H29119.5Cl2—C31—H31A109.1
C30—C29—H29119.5Cl3—C31—H31B109.1
C12—C11—C20120.2 (4)Cl2—C31—H31B109.1
C12—C11—P1119.3 (3)H31A—C31—H31B107.8
C20—C11—P1120.4 (3)
C3—Pd1—P1—C111.1 (2)C25—C26—C27—C281.1 (7)
Cl1—Pd1—P1—C1161.18 (17)C26—C27—C28—C290.1 (7)
C3—Pd1—P1—C11130.1 (2)C27—C28—C29—C301.0 (7)
Cl1—Pd1—P1—C1142.19 (17)C25—C30—C29—C281.1 (6)
C3—Pd1—P1—C21102.4 (2)C21—C30—C29—C28178.7 (4)
Cl1—Pd1—P1—C2185.31 (15)C1—P1—C11—C12106.0 (4)
P1—Pd1—Cl1—Pd1i173.47 (4)C21—P1—C11—C127.4 (4)
Cl1i—Pd1—Cl1—Pd1i0Pd1—P1—C11—C12135.9 (3)
P1—Pd1—C3—C4175.6 (5)C1—P1—C11—C2070.5 (4)
Cl1i—Pd1—C3—C42.4 (5)C21—P1—C11—C20176.1 (3)
P1—Pd1—C3—C211.2 (4)Pd1—P1—C11—C2047.6 (4)
Cl1i—Pd1—C3—C2175.6 (4)C12—C11—C20—C19178.3 (4)
C4—C3—C2—C1179.9 (5)P1—C11—C20—C191.8 (6)
Pd1—C3—C2—C16.5 (7)C12—C11—C20—C150.8 (6)
C4—C3—C2—C71.0 (8)P1—C11—C20—C15177.3 (3)
Pd1—C3—C2—C7172.6 (4)C15—C20—C19—C180.1 (7)
C7—C2—C1—C101.2 (8)C11—C20—C19—C18178.9 (4)
C3—C2—C1—C10177.9 (5)C20—C19—C18—C170.6 (8)
C7—C2—C1—P1176.5 (4)C19—C18—C17—C160.9 (8)
C3—C2—C1—P14.4 (6)C18—C17—C16—C150.3 (8)
C11—P1—C1—C1042.0 (6)C17—C16—C15—C14179.5 (5)
C21—P1—C1—C1072.5 (5)C17—C16—C15—C200.4 (7)
Pd1—P1—C1—C10171.1 (5)C19—C20—C15—C160.6 (6)
C11—P1—C1—C2140.5 (4)C11—C20—C15—C16178.5 (4)
C21—P1—C1—C2105.0 (4)C19—C20—C15—C14179.8 (4)
Pd1—P1—C1—C211.4 (4)C11—C20—C15—C140.6 (6)
C1—P1—C21—C228.5 (4)C16—C15—C14—C13177.7 (4)
C11—P1—C21—C22121.7 (3)C20—C15—C14—C131.4 (7)
Pd1—P1—C21—C22103.6 (3)C15—C14—C13—C120.7 (7)
C1—P1—C21—C30179.9 (3)C20—C11—C12—C131.5 (6)
C11—P1—C21—C3066.9 (4)P1—C11—C12—C13178.0 (3)
Pd1—P1—C21—C3067.9 (3)C14—C13—C12—C110.8 (7)
C22—C21—C30—C29178.7 (4)C2—C1—C10—C91.3 (9)
P1—C21—C30—C2910.1 (6)P1—C1—C10—C9176.0 (5)
C22—C21—C30—C251.5 (6)C1—C10—C9—C80.0 (10)
P1—C21—C30—C25169.7 (3)C10—C9—C8—C71.3 (11)
C29—C30—C25—C260.2 (6)C9—C8—C7—C21.3 (11)
C21—C30—C25—C26179.6 (4)C9—C8—C7—C6178.0 (7)
C29—C30—C25—C24179.5 (4)C1—C2—C7—C80.1 (9)
C21—C30—C25—C240.6 (6)C3—C2—C7—C8179.2 (6)
C26—C25—C24—C23178.9 (4)C1—C2—C7—C6179.2 (6)
C30—C25—C24—C230.9 (7)C3—C2—C7—C60.1 (9)
C25—C24—C23—C221.5 (7)C8—C7—C6—C5179.3 (8)
C30—C21—C22—C231.0 (6)C2—C7—C6—C50.0 (12)
P1—C21—C22—C23170.7 (3)C7—C6—C5—C40.8 (13)
C24—C23—C22—C210.6 (7)C2—C3—C4—C51.8 (9)
C24—C25—C26—C27179.4 (4)Pd1—C3—C4—C5171.6 (5)
C30—C25—C26—C270.9 (6)C6—C5—C4—C31.8 (11)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C15/C20, C21–C25/C30, Pd1/Cl1/Pd1'/Cl1' and C1/C2/C7–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl30.952.723.536 (7)145
C31—H31A···Cl3ii0.992.523.366 (16)143
C9—H9···Cg1iii0.952.833.666 (5)148
C18—H18···Cg2iv0.952.913.788 (6)154
C26—H26···Cg3v0.952.593.535 (5)172
C31—H31B···Cg4iii0.992.753.632 (15)148
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C11–C15/C20, C21–C25/C30, Pd1/Cl1/Pd1'/Cl1' and C1/C2/C7–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cl30.952.723.536 (7)145
C31—H31A···Cl3i0.992.523.366 (16)143.3
C9—H9···Cg1ii0.952.833.666 (5)148
C18—H18···Cg2iii0.952.913.788 (6)154
C26—H26···Cg3iv0.952.593.535 (5)172
C31—H31B···Cg4ii0.992.753.632 (15)148
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y, z+1.
Acknowledgements top

Financial assistance from the Research Fund of the University of Johannesburg is gratefully acknowledged.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bedford, R. B., Cazin, C. S. J. & Holder, D. (2004). Coord. Chem. Rev. 248, 2283–2321.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.

Dunina, V. V., Turubanova, E. I., Livantsov, M. V., Lyssenko, K. A. & Grishin, Y. K. (2008). Tetrahedron Asymmetry 19, 1519–1522.

Dunina, V. V., Zykov, P. A., Livantsov, M. V., Glukhov, I. V., Kochetkov, K. A., Gloriozov, I. P. & Grishin, Y. K. (2009). Organometallics, 28, 425–432.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Morales-Morales, D., Cramer, R. E. & Jensen, C. M. (2002). J. Organomet. Chem. 654, 44–50.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.