supplementary materials


aa2077 scheme

Acta Cryst. (2013). E69, m60-m61    [ doi:10.1107/S1600536812050660 ]

catena-Poly[[[aqua(glycine-[kappa]O)lithium]-[mu]-glycine-[kappa]2O:O'] bromide]

T. Balakrishnan, K. Ramamurthi, J. Jeyakanthan and S. Thamotharan

Abstract top

In the title coordination polymer, {[Li(C2H5NO2)2(H2O)]Br}n, the Li+ cation is coordinated by three carboxylate O atoms of zwitterionic glycine molecules and by a water molecule, forming a distorted tetrahedral geometry. One of the two glycine molecules bridges neighbouring complexes, forming an infinite chain parallel to the c axis. Polymeric chains are further linked by extensive hydrogen bonds involving the Br- anions and glycine and water molecules, producing a three-dimensional network.

Comment top

The asymmetric unit of the title complex contains two glycine molecules, one Li cation, one Br- anion and a water molecule (Fig. 1). The bond lengths and angles around the carboxylic groups of both glycine molecules indicate that they are deprotonated and each carboxylic group then carries a negative charge. The amino groups of the glycine molecules are protonated. The positive charge of the ammonium groups are compensated for by the negative charge of the carboxylate groups. The central Li atom is coordinated by a water molecule and three carboxylate oxygen atoms of the three glycine molecules, and has a distorted tetrahedral coordination geometry. One of the two glycine molecules acts as a bridging ligand connecting neighbouring complexes to an infinite chain parallel to the c axis (Fig. 2).

The ammonium group of one glycine molecule is involved in an intermolecular hydrogen bond (N1—H1A···O4) with an adjacent glycine molecule (Table 1). Another amino group of the second glycine molecule also participates in an intermolecular hydrogen bond (N2—H2B···O1) with a neighbouring carboxylate group of a glycine molecule. These two hydrogen bonds combined to produce C22(10) (Bernstein et al., 1995) chains that run parallel to the c axis. Adjacent C22(10) chains are connected by another N1···O1 hydrogen bond via hydrogen H2C. Two types of N2···O1 hydrogen bonds generate two ring motifs, R24(8) and R44(20), with C22(10) chains (Fig. 3). These two ring motifs are arranged alternately along the c axis.

Each polymer chain is interconnected with neighbouring polymeric chains via a hydrogen bond (N2—H2C···O1, Table 1) involving the ammonium group of glycine and a symmetry-related carboxylate group. This hydrogen bond produce two ring motifs R22(18) and R22(26). These two rings motifs are arranged alternately along the bc plane (Fig. 4). Four glycine molecules and two Li cations are involved in the former ring, while six glycines and four Li ions are involved in the latter motif. The Br- anion acts as an acceptor for two different ammonium groups (atoms N1 and N2) of the glycine molecules. The water molecule acts as a donor for two different intermolecular hydrogen bonds with a carboxylate oxygen (O2) and the Br- anion. The N1—H1C···Br1, O1W—H1···O2 and O1W—H2···Br1 hydrogen bonds held together to form a R46(18) ring motif (Fig. 5).

Related literature top

For hydrogen-bonding motifs, see Bernstein et al. (1995). For glycine polymorphs, see: Marsh (1958); Iitaka (1960, 1961). For glycine with halogen and metal halogenides, see: Fleck (2008). For related structures, see: Müller et al. (1994); Baran et al. (2003, 2009); Fleck & Bohatý (2004); Fleck et al. (2006). For head-to-tail hydrogen bonds, see: Sharma et al. (2006); Selvaraj et al. (2007).

Experimental top

A 1:1 stoichiometeric mixture of glycine and lithium bromide was dissolved in double distilled water. Colourless block-shaped single crystals were obtained after 2 weeks by slow evaporation.

Refinement top

The positions of H atoms bound to nitrogen and water oxygen were determined from difference electron density maps and refined freely along with their isotropic displacement parameter. The O—H distances of water molecule are restrained to 0.84 (2) Å using DFIX option. The H atoms bound to carbon were placed in geometrically idealized positions (C—H = 0.99 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: EXPOSE in IPDS (Stoe & Cie, 2000); cell refinement: CELL in IPDS (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, showing the atom-labeling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (a) x, -y+3/2, z-1/2 (b) x, -y+3/2, z+1/2.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title complex. The hydrogen bonds are shown as dashed lines (see Table 1 for details). For clarity, H atoms not involved in hydrogen bonds have been omitted in this and subsequent figures..
[Figure 3] Fig. 3. A partial view of the crystal structure of the title complex, showing the hydrogen bonds involving the glycine molecules.
[Figure 4] Fig. 4. Part of the crystal structure showing N1—H2C···O1 hydrogen bond links the coodination polymeric chains.
[Figure 5] Fig. 5. Part of the crystal structure showing R4 6(18) ring motif which comprises two glycines, two waters and two Br- anions. Hydrogen bonds are indicated by dashed lines.
catena-Poly[[[aqua(glycine-κO)lithium]-µ-glycine- κ2O:O'] bromide] top
Crystal data top
[Li(C2H5NO2)2(H2O)]BrF(000) = 512
Mr = 255.01Dx = 1.768 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7161 reflections
a = 7.5396 (6) Åθ = 2.3–26.0°
b = 17.4173 (14) ŵ = 4.28 mm1
c = 8.2726 (12) ÅT = 173 K
β = 118.138 (7)°Rod, colourless
V = 957.96 (18) Å30.61 × 0.30 × 0.30 mm
Z = 4
Data collection top
STOE IPDS
diffractometer
1847 independent reflections
Radiation source: fine-focus sealed tube1520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi rotation scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 99
Tmin = 0.217, Tmax = 0.277k = 2121
7515 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0317P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
1847 reflectionsΔρmax = 0.55 e Å3
151 parametersΔρmin = 0.26 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0097 (8)
Crystal data top
[Li(C2H5NO2)2(H2O)]BrV = 957.96 (18) Å3
Mr = 255.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5396 (6) ŵ = 4.28 mm1
b = 17.4173 (14) ÅT = 173 K
c = 8.2726 (12) Å0.61 × 0.30 × 0.30 mm
β = 118.138 (7)°
Data collection top
STOE IPDS
diffractometer
1847 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
1520 reflections with I > 2σ(I)
Tmin = 0.217, Tmax = 0.277Rint = 0.043
7515 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051Δρmax = 0.55 e Å3
S = 0.96Δρmin = 0.26 e Å3
1847 reflectionsAbsolute structure: ?
151 parametersFlack parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4191 (2)0.89555 (8)0.8413 (2)0.0210 (3)
O20.1743 (3)0.80884 (9)0.7211 (2)0.0250 (4)
O1W0.0182 (3)0.65924 (9)0.4468 (2)0.0218 (4)
H10.075 (4)0.6666 (14)0.385 (4)0.027 (7)*
H20.084 (4)0.6254 (14)0.522 (4)0.043 (9)*
O30.1525 (3)0.81668 (8)0.1971 (2)0.0270 (4)
O40.2535 (2)0.80493 (8)0.4080 (2)0.0217 (3)
N10.5965 (3)0.84975 (12)0.6419 (3)0.0205 (4)
H1A0.643 (4)0.8360 (15)0.559 (4)0.031 (7)*
H1B0.702 (5)0.8395 (17)0.755 (5)0.038 (8)*
H1C0.580 (5)0.899 (2)0.631 (4)0.047 (9)*
N20.2448 (3)0.96593 (11)0.1353 (3)0.0174 (4)
H2A0.129 (5)0.9644 (14)0.156 (4)0.025 (7)*
H2B0.323 (4)0.9429 (15)0.027 (4)0.029 (7)*
H2C0.284 (4)1.0168 (17)0.126 (4)0.035 (8)*
C10.3295 (3)0.84132 (11)0.7358 (3)0.0153 (4)
C20.4092 (3)0.81116 (11)0.6103 (3)0.0174 (4)
H2E0.43420.75530.63070.021*
H2F0.30620.81890.48120.021*
C30.2198 (3)0.84265 (12)0.2952 (3)0.0166 (4)
C40.2679 (4)0.92762 (12)0.2840 (3)0.0204 (5)
H4A0.40780.93430.26240.025*
H4B0.17720.95230.40250.025*
Li10.0369 (6)0.7388 (2)0.5754 (5)0.0196 (8)
Br10.24155 (3)0.968012 (12)0.27597 (3)0.02208 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0197 (8)0.0202 (8)0.0247 (9)0.0040 (6)0.0118 (7)0.0074 (6)
O20.0244 (9)0.0289 (8)0.0290 (10)0.0120 (7)0.0186 (8)0.0097 (7)
O1W0.0316 (9)0.0191 (8)0.0248 (10)0.0070 (7)0.0217 (9)0.0058 (7)
O30.0410 (10)0.0198 (7)0.0349 (10)0.0062 (7)0.0300 (9)0.0011 (7)
O40.0254 (8)0.0231 (7)0.0223 (9)0.0046 (6)0.0159 (8)0.0045 (6)
N10.0191 (11)0.0237 (10)0.0236 (12)0.0025 (8)0.0142 (11)0.0050 (8)
N20.0149 (9)0.0166 (9)0.0213 (11)0.0007 (8)0.0089 (9)0.0015 (8)
C10.0165 (10)0.0150 (9)0.0145 (11)0.0024 (8)0.0073 (10)0.0018 (8)
C20.0191 (11)0.0168 (9)0.0201 (12)0.0012 (8)0.0123 (10)0.0027 (8)
C30.0128 (10)0.0204 (10)0.0157 (12)0.0008 (8)0.0061 (10)0.0019 (8)
C40.0253 (12)0.0207 (11)0.0211 (12)0.0008 (9)0.0158 (11)0.0023 (9)
Li10.023 (2)0.0190 (16)0.020 (2)0.0040 (14)0.0125 (18)0.0022 (14)
Br10.01662 (13)0.02188 (12)0.02587 (15)0.00224 (9)0.00846 (10)0.00292 (9)
Geometric parameters (Å, º) top
O1—C11.247 (3)N1—H1C0.86 (3)
O2—C11.253 (3)N2—C41.480 (3)
O2—Li11.915 (4)N2—H2A0.81 (3)
O1W—Li11.908 (4)N2—H2B0.90 (3)
O1W—H10.816 (17)N2—H2C0.93 (3)
O1W—H20.829 (18)C1—C21.518 (3)
O3—C31.228 (3)C2—H2E0.9900
O3—Li1i1.880 (4)C2—H2F0.9900
O4—C31.261 (3)C3—C41.516 (3)
O4—Li11.944 (4)C4—H4A0.9900
N1—C21.472 (3)C4—H4B0.9900
N1—H1A0.94 (3)Li1—O3ii1.880 (4)
N1—H1B0.92 (4)
C1—O2—Li1144.09 (18)O3—C3—O4126.0 (2)
Li1—O1W—H1123.4 (18)O3—C3—C4118.73 (18)
Li1—O1W—H2108 (2)O4—C3—C4115.30 (17)
H1—O1W—H2106 (3)O3—C3—Li196.65 (15)
C3—O3—Li1i169.50 (19)C4—C3—Li1134.84 (17)
C3—O4—Li1116.16 (16)N2—C4—C3111.84 (17)
C2—N1—H1A114.4 (17)N2—C4—H4A109.2
C2—N1—H1B113.0 (18)C3—C4—H4A109.2
H1A—N1—H1B105 (3)N2—C4—H4B109.2
C2—N1—H1C111 (2)C3—C4—H4B109.2
H1A—N1—H1C105 (3)H4A—C4—H4B107.9
H1B—N1—H1C108 (3)O3ii—Li1—O1W101.73 (17)
C4—N2—H2A110 (2)O3ii—Li1—O2116.6 (2)
C4—N2—H2B110.4 (17)O1W—Li1—O2118.6 (2)
H2A—N2—H2B109 (3)O3ii—Li1—O4103.87 (18)
C4—N2—H2C109.9 (18)O1W—Li1—O4111.3 (2)
H2A—N2—H2C109 (2)O2—Li1—O4103.93 (17)
H2B—N2—H2C108 (3)O3ii—Li1—C3128.00 (19)
O1—C1—O2125.69 (19)O1W—Li1—C399.35 (16)
O1—C1—C2118.81 (18)O2—Li1—C392.83 (15)
O2—C1—C2115.49 (18)O4—Li1—C324.36 (7)
N1—C2—C1112.13 (17)O3ii—Li1—H289.3 (7)
N1—C2—H2E109.2O1W—Li1—H220.0 (6)
C1—C2—H2E109.2O2—Li1—H2112.4 (8)
N1—C2—H2F109.2O4—Li1—H2130.3 (7)
C1—C2—H2F109.2C3—Li1—H2119.3 (6)
H2E—C2—H2F107.9
Li1—O2—C1—O1168.2 (3)C1—O2—Li1—C372.0 (3)
Li1—O2—C1—C210.9 (4)C3—O4—Li1—O3ii172.65 (17)
O1—C1—C2—N13.5 (3)C3—O4—Li1—O1W63.9 (2)
O2—C1—C2—N1177.3 (2)C3—O4—Li1—O264.9 (2)
Li1i—O3—C3—O414.7 (13)O3—C3—Li1—O3ii133.0 (2)
Li1i—O3—C3—C4165.1 (10)O4—C3—Li1—O3ii9.1 (2)
Li1i—O3—C3—Li114.2 (11)C4—C3—Li1—O3ii84.0 (3)
Li1—O4—C3—O349.0 (3)O3—C3—Li1—O1W20.0 (2)
Li1—O4—C3—C4130.8 (2)O4—C3—Li1—O1W122.0 (2)
O3—C3—C4—N26.3 (3)C4—C3—Li1—O1W163.0 (2)
O4—C3—C4—N2173.94 (19)O3—C3—Li1—O299.58 (17)
Li1—C3—C4—N2143.3 (2)O4—C3—Li1—O2118.4 (2)
C1—O2—Li1—O3ii152.4 (3)C4—C3—Li1—O243.4 (3)
C1—O2—Li1—O1W30.3 (4)O3—C3—Li1—O4142.0 (3)
C1—O2—Li1—O493.9 (3)C4—C3—Li1—O475.0 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4iii0.94 (3)1.83 (3)2.774 (2)176 (3)
N1—H1B···O1Wiv0.92 (4)2.15 (4)2.989 (3)151 (2)
N1—H1C···Br1v0.86 (3)2.61 (3)3.353 (2)146 (3)
N2—H2A···Br10.81 (3)2.48 (3)3.283 (2)170 (3)
N2—H2B···O1vi0.90 (3)2.00 (3)2.833 (3)153 (2)
N2—H2C···O1vii0.93 (3)1.92 (3)2.797 (2)157 (3)
O1W—H1···O2i0.82 (2)1.88 (2)2.692 (2)172 (3)
O1W—H2···Br1ii0.83 (2)2.48 (2)3.2923 (17)169 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+3/2, z+1/2; (v) x+1, y+2, z+1; (vi) x1, y, z1; (vii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.94 (3)1.83 (3)2.774 (2)176 (3)
N1—H1B···O1Wii0.92 (4)2.15 (4)2.989 (3)151 (2)
N1—H1C···Br1iii0.86 (3)2.61 (3)3.353 (2)146 (3)
N2—H2A···Br10.81 (3)2.48 (3)3.283 (2)170 (3)
N2—H2B···O1iv0.90 (3)2.00 (3)2.833 (3)153 (2)
N2—H2C···O1v0.93 (3)1.92 (3)2.797 (2)157 (3)
O1W—H1···O2vi0.816 (17)1.882 (18)2.692 (2)172 (3)
O1W—H2···Br1vii0.829 (18)2.475 (19)3.2923 (17)169 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y+2, z+1; (iv) x1, y, z1; (v) x, y+2, z+1; (vi) x, y+3/2, z1/2; (vii) x, y+3/2, z+1/2.
Acknowledgements top

TB thanks the University Grants Commission (UGC) for the award of a Research Fellowship under the Faculty Improvement Programme (FIP). We are grateful to Professor Helen Stoeckli-Evans, University of Neuchâtel, Switzerland, for measuring the X-ray diffraction data.

references
References top

Baran, J., Drozd, M., Pietraszko, A., Trzebiatowska, M. & Ratajczak, H. J. (2003). Pol. J. Chem. 771, 1561–1577.

Baran, J., Drozd, M., Ratajczak, H. & Pietraszko, A. (2009). J. Mol. Struct. 927, 43–53.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Fleck, M. (2008). Z. Kristallogr. 223, 222–232.

Fleck, M. & Bohatý, L. (2004). Acta Cryst. C60, m291–m295.

Fleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122–m125.

Iitaka, Y. (1960). Acta Cryst. 13, 35–45.

Iitaka, Y. (1961). Acta Cryst. 14, 1–10.

Marsh, R. E. (1958). Acta Cryst. 11, 654–663.

Müller, G., Maier, G. M. & Lutz, M. (1994). Inorg. Chim. Acta, 218, 121–131.

Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468.

Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Stoe & Cie (2000). IPDS. Stoe & Cie GmbH, Darmstadt, Germany.