organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Eth­­oxy­carbonyl-5,7-dihy­dr­oxy-2,3-di­hydro-1H-pyrido[3,2,1-ij]quinolinium tribromide

aDepartment of Chemistry, Moscow State University, Moscow 119992, Russian Federation, bSTC `Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine, and cNational University of Pharmacy, 4 Blyukhera Street, Kharkiv 61002, Ukraine
*Correspondence e-mail: rybakov20021@yandex.ru

(Received 23 November 2012; accepted 30 November 2012; online 15 December 2012)

In the title salt, C15H16NO4+.Br3, classical intra­molecular O—H⋯O hydrogen bonds are found, which results in the co-planarity of the ester substituents with the quinolinium residue [C—C—C—O torsion angle = 1.0 (10)°]. The bromine anions are placed on both sides of heterocyclic cation and form Br⋯N contacts of 3.674 (9) and 3.860 (9) Å, which confirms the location of positive charge on the N atom. Non-classical inter­molecular C—H⋯Br inter­actions stabilize the three-dimensional crystal structure. Moreover, anion⋯π inter­actions are noted [Br⋯ring centroid range = 3.367 (9)–3.697 (9) Å]. The partly saturated heterocycle is disordered over two sofa conformations with occupancies in the ratio 0.56 (2):0.44 (2).

Related literature

For general background, see: Ukrainets et al. (2004[Ukrainets, I. V., Petrushova, L. A., Sidorenko, L. V., Rybakov, V. B. & Chernyshev, V. V. (2004). Zh. Org. Farm. Khim. 2, 26-31.], 2007[Ukrainets, I. V., Sidorenko, L. V. & Golovchenko, O. S. (2007). Chem. Heterocycl. Compd, pp. 1008-1013.]). For chemical bond lengths, see: Bürgi & Dunitz (1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16NO4+·Br3

  • Mr = 513.99

  • Triclinic, [P \overline 1]

  • a = 7.6491 (8) Å

  • b = 9.1729 (10) Å

  • c = 13.3722 (14) Å

  • α = 102.355 (9)°

  • β = 98.777 (9)°

  • γ = 98.093 (9)°

  • V = 891.06 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.81 mm−1

  • T = 295 K

  • 0.20 × 0.05 × 0.05 mm

Data collection
  • Agilent Xcalibur-3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.343, Tmax = 0.727

  • 10147 measured reflections

  • 5106 independent reflections

  • 1855 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.217

  • S = 0.90

  • 5106 reflections

  • 224 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 0.82 1.93 2.631 (7) 142
O1—H1⋯O3 0.82 1.73 2.459 (10) 147
C3—H3⋯Br1i 0.93 2.90 3.810 (9) 168
C4—H4⋯Br2ii 0.93 3.06 3.846 (9) 143
C10—H10B⋯Br2 0.97 2.99 3.936 (8) 166
C10—H10C⋯Br4iii 0.97 2.92 3.752 (8) 144
C11A—H11B⋯Br4iii 0.97 3.02 3.797 (17) 138
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z; (iii) -x, -y, -z.

Data collection: CrysAlis CCD (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Agilent, 2011[Agilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bromination of alkyl 1-R-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylates (R = H, alkyl, phenyl) by molecular bromine in the environment of acetic acid can pass on two directions (Ukrainets et al., 2004, 2007). However, the reaction of ethyl 7-hydroxy-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylate with bromine results in the 6-ethyloxycarbonyl-5,7-dihydroxy-2,3-dihydro-1H-pyrido[3,2,1-ij]quinolinium tribromide, I.

Two tribromide anions are located in special positions, the coordinates of the central atoms coincide with the center of symmetry so the asymmetric part of unit cell contains one cation and two halves of anions. The positive charge of the cation is located on the N atom which is bonded with three atoms and the N1C9 bond (1.335 (6) Å) has double character (the mean value for Csp2N bond is 1.329 (1) Å (Bürgi & Dunitz, 1994)).

The partly saturated heterocycle is disordered over two sofa conformations (A and B) with population in the ratio 0.56 (2)/0.44 (2). The deviations of the C11 atom from main plane C1/C2/N1/C10/C12 are -0.57 (1) and 0.59 (1) Å for conformers A and B, respectively. The ester substituent is coplanar to the planar fragment of tricycle (C9—C8—C13—O3 torsion angle is 1.0 (10)°) owing to the formation of the strong intramolecular hydrogen bonds O1—H1···O3 and O2—H2···O4 (Table 1). The formation of hydrogen bonds causes the elongation of the C13O3 (1.243 (10) Å) and C7C8 (1.376 (9) Å) bonds (the mean values are 1.210 (1) Å and 1.326 (1) Å, respectively) and the shortening of the C9—O1 (1.307 (8) Å), C7—O2 (1.299 (8) Å) bonds (the mean value is 1.333 (1) Å). The methylene atom from ethyl group of the substituent has ap-orientation relative to the C8—C13 bond and is turned relative to the C13—O4 bond (the C14—O4—C13—C8 and C13—O4—C14—C15 torsion angles are 175.7 (6)° and -155.4 (8)°, respectively).

Related literature top

For general background, see: Ukrainets et al. (2004, 2007). For chemical bond lengths, see: Bürgi & Dunitz (1994).

Experimental top

A solution of anhydrous bromine (0.52 ml, 0.01 mol) in anhydrous acetic acid (5 ml) was added with vigorous stirring to a solution of the ethyl 7-hydroxy-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylate (2.73 g, 0.01 mol) in anhydrous acetic acid (20 ml). A light-yellow precipitate was formed immediately. The crystals of I were filtered off, washed with acetic acid and dried to give the product (2.26 g, 44%); m.p. 360–362 K.

Refinement top

The restrictions on the bond length of the ethyl group of the ester substituent and bond lengths in disordered fragment (1.54 Å) were applied. All H atoms were located from electron-density difference maps and were refined in the riding-motion approximation with Uiso(H) constrained to be 1.5 times Ueq of the carrier atom for the methyl and hydroxyl groups and 1.2 times Ueq of the carrier atom for the other atoms.

Structure description top

Bromination of alkyl 1-R-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylates (R = H, alkyl, phenyl) by molecular bromine in the environment of acetic acid can pass on two directions (Ukrainets et al., 2004, 2007). However, the reaction of ethyl 7-hydroxy-5-oxo-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxylate with bromine results in the 6-ethyloxycarbonyl-5,7-dihydroxy-2,3-dihydro-1H-pyrido[3,2,1-ij]quinolinium tribromide, I.

Two tribromide anions are located in special positions, the coordinates of the central atoms coincide with the center of symmetry so the asymmetric part of unit cell contains one cation and two halves of anions. The positive charge of the cation is located on the N atom which is bonded with three atoms and the N1C9 bond (1.335 (6) Å) has double character (the mean value for Csp2N bond is 1.329 (1) Å (Bürgi & Dunitz, 1994)).

The partly saturated heterocycle is disordered over two sofa conformations (A and B) with population in the ratio 0.56 (2)/0.44 (2). The deviations of the C11 atom from main plane C1/C2/N1/C10/C12 are -0.57 (1) and 0.59 (1) Å for conformers A and B, respectively. The ester substituent is coplanar to the planar fragment of tricycle (C9—C8—C13—O3 torsion angle is 1.0 (10)°) owing to the formation of the strong intramolecular hydrogen bonds O1—H1···O3 and O2—H2···O4 (Table 1). The formation of hydrogen bonds causes the elongation of the C13O3 (1.243 (10) Å) and C7C8 (1.376 (9) Å) bonds (the mean values are 1.210 (1) Å and 1.326 (1) Å, respectively) and the shortening of the C9—O1 (1.307 (8) Å), C7—O2 (1.299 (8) Å) bonds (the mean value is 1.333 (1) Å). The methylene atom from ethyl group of the substituent has ap-orientation relative to the C8—C13 bond and is turned relative to the C13—O4 bond (the C14—O4—C13—C8 and C13—O4—C14—C15 torsion angles are 175.7 (6)° and -155.4 (8)°, respectively).

For general background, see: Ukrainets et al. (2004, 2007). For chemical bond lengths, see: Bürgi & Dunitz (1994).

Computing details top

Data collection: CrysAlis CCD (Agilent, 2011); cell refinement: CrysAlis RED (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 15% probability level. H atoms are presented as a small spheres of arbitrary radius. Intramolecular hydrogen bonds are indicated by dashed lines. Only major moiety of disorder group [s.o.f. = 0.56 (2)] are presented. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y, -z.
6-Ethoxycarbonyl-5,7-dihydroxy-2,3-dihydro-1H- pyrido[3,2,1-ij]quinolinium tribromide top
Crystal data top
C15H16NO4+·Br3Z = 2
Mr = 513.99F(000) = 500
Triclinic, P1Dx = 1.916 Mg m3
Hall symbol: -P 1Melting point = 360–362 K
a = 7.6491 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1729 (10) ÅCell parameters from 1363 reflections
c = 13.3722 (14) Åθ = 3.1–32.0°
α = 102.355 (9)°µ = 6.81 mm1
β = 98.777 (9)°T = 295 K
γ = 98.093 (9)°Rod, light yellow
V = 891.06 (17) Å30.20 × 0.05 × 0.05 mm
Data collection top
Agilent Xcalibur-3 CCD
diffractometer
5106 independent reflections
Radiation source: Enhance (Mo) X-Ray Source1855 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
k = 1212
Tmin = 0.343, Tmax = 0.727l = 1818
10147 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: difference Fourier map
wR(F2) = 0.217H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.108P)2]
where P = (Fo2 + 2Fc2)/3
5106 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 1.02 e Å3
5 restraintsΔρmin = 0.74 e Å3
Crystal data top
C15H16NO4+·Br3γ = 98.093 (9)°
Mr = 513.99V = 891.06 (17) Å3
Triclinic, P1Z = 2
a = 7.6491 (8) ÅMo Kα radiation
b = 9.1729 (10) ŵ = 6.81 mm1
c = 13.3722 (14) ÅT = 295 K
α = 102.355 (9)°0.20 × 0.05 × 0.05 mm
β = 98.777 (9)°
Data collection top
Agilent Xcalibur-3 CCD
diffractometer
5106 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2011)
1855 reflections with I > 2σ(I)
Tmin = 0.343, Tmax = 0.727Rint = 0.034
10147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0685 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 0.90Δρmax = 1.02 e Å3
5106 reflectionsΔρmin = 0.74 e Å3
224 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Agilent Technologies, 2011). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wRand goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.50000.50000.50000.0803 (3)
Br20.56781 (11)0.74499 (9)0.44305 (6)0.1062 (4)
Br30.00000.00000.00000.1391 (6)
Br40.06301 (17)0.24813 (17)0.03287 (9)0.1666 (6)
N10.1821 (7)0.3314 (6)0.2533 (4)0.0753 (14)
O10.4153 (7)0.3418 (7)0.1698 (5)0.1109 (17)
H10.49950.29860.15800.166*
O20.2437 (8)0.0849 (6)0.3048 (4)0.0989 (14)
H20.32010.12170.27600.148*
O30.5774 (8)0.1288 (8)0.1341 (4)0.131 (2)
O40.5025 (7)0.0768 (7)0.1961 (4)0.1052 (16)
C10.0665 (9)0.2577 (8)0.3053 (4)0.0726 (17)
C20.0723 (9)0.3279 (8)0.3413 (6)0.0848 (19)
C30.1792 (11)0.2510 (11)0.3935 (6)0.108 (2)
H30.26790.29720.42090.129*
C40.1624 (11)0.1110 (10)0.4074 (6)0.095 (2)
H40.24380.06100.43940.114*
C50.0296 (10)0.0449 (8)0.3754 (5)0.0853 (19)
H50.01360.04830.38880.102*
C60.0867 (9)0.1169 (8)0.3211 (4)0.0747 (17)
C70.2325 (9)0.0461 (8)0.2845 (5)0.0774 (17)
C80.3425 (9)0.1203 (8)0.2317 (5)0.0772 (17)
C90.3130 (10)0.2649 (9)0.2176 (5)0.085 (2)
C100.1679 (10)0.4818 (9)0.2325 (7)0.110 (3)
H10A0.19980.48490.16540.132*0.56 (2)
H10B0.25200.55970.28550.132*0.56 (2)
H10C0.10170.46910.16240.132*0.44 (2)
H10D0.28710.53890.23780.132*0.44 (2)
C11A0.0241 (14)0.515 (2)0.2325 (11)0.113 (7)0.56 (2)
H11A0.02230.62140.23530.136*0.56 (2)
H11B0.10110.45690.16750.136*0.56 (2)
C11B0.0704 (18)0.5691 (14)0.3120 (14)0.117 (9)0.44 (2)
H11C0.15060.60190.37930.141*0.44 (2)
H11D0.04310.65910.29040.141*0.44 (2)
C120.1052 (12)0.4752 (10)0.3240 (7)0.126 (3)
H12A0.05350.55360.38690.151*0.56 (2)
H12B0.23380.47340.30990.151*0.56 (2)
H12C0.14990.52960.38250.151*0.44 (2)
H12D0.19560.45970.26150.151*0.44 (2)
C130.4866 (11)0.0567 (11)0.1831 (5)0.092 (2)
C140.6366 (11)0.1428 (11)0.1409 (8)0.140 (4)
H14A0.75640.10790.18290.167*
H14B0.63520.11370.07520.167*
C150.5833 (15)0.3161 (11)0.1218 (10)0.173 (5)
H15A0.65580.36490.07720.260*
H15B0.45880.34700.08930.260*
H15C0.60200.34440.18720.260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0730 (5)0.0913 (7)0.0716 (5)0.0189 (5)0.0020 (4)0.0143 (5)
Br20.1086 (6)0.0994 (7)0.1052 (6)0.0040 (5)0.0010 (4)0.0359 (5)
Br30.0870 (7)0.2340 (17)0.0652 (6)0.0272 (9)0.0029 (5)0.0175 (7)
Br40.1423 (10)0.2122 (13)0.1221 (8)0.0008 (9)0.0014 (6)0.0283 (8)
N10.071 (3)0.071 (4)0.077 (3)0.003 (3)0.004 (3)0.019 (3)
O10.098 (4)0.133 (5)0.108 (4)0.009 (3)0.022 (3)0.061 (4)
O20.112 (4)0.082 (3)0.116 (4)0.034 (3)0.040 (3)0.028 (3)
O30.107 (4)0.179 (6)0.104 (4)0.004 (4)0.050 (3)0.027 (4)
O40.083 (3)0.110 (4)0.114 (4)0.011 (3)0.031 (3)0.002 (3)
C10.076 (4)0.076 (4)0.055 (3)0.003 (3)0.006 (3)0.017 (3)
C20.084 (4)0.082 (5)0.099 (5)0.026 (4)0.020 (4)0.034 (4)
C30.095 (5)0.125 (7)0.103 (5)0.021 (5)0.035 (4)0.016 (5)
C40.096 (5)0.104 (6)0.095 (5)0.029 (5)0.040 (4)0.024 (4)
C50.097 (5)0.083 (5)0.081 (4)0.009 (4)0.023 (4)0.030 (4)
C60.086 (4)0.080 (5)0.052 (3)0.007 (4)0.002 (3)0.019 (3)
C70.080 (4)0.076 (5)0.069 (4)0.007 (4)0.008 (3)0.012 (3)
C80.076 (4)0.084 (5)0.062 (3)0.002 (4)0.006 (3)0.010 (3)
C90.085 (5)0.096 (6)0.059 (3)0.017 (4)0.002 (3)0.019 (4)
C100.113 (6)0.086 (6)0.113 (6)0.014 (5)0.012 (5)0.027 (5)
C11A0.115 (13)0.103 (12)0.127 (14)0.022 (10)0.004 (10)0.052 (11)
C11B0.111 (16)0.081 (14)0.17 (2)0.015 (11)0.018 (16)0.060 (14)
C120.141 (8)0.099 (6)0.146 (8)0.029 (6)0.034 (6)0.038 (6)
C130.092 (5)0.102 (6)0.072 (4)0.014 (5)0.008 (4)0.009 (4)
C140.097 (6)0.154 (10)0.151 (8)0.033 (6)0.043 (6)0.019 (7)
C150.176 (11)0.169 (12)0.232 (13)0.074 (10)0.106 (10)0.096 (11)
Geometric parameters (Å, º) top
Br1—Br2i2.5346 (8)C7—C81.376 (9)
Br1—Br22.5346 (8)C8—C91.423 (10)
Br3—Br4ii2.5057 (16)C8—C131.489 (11)
Br3—Br42.5057 (16)C10—C11A1.5398 (10)
N1—C91.340 (9)C10—C11B1.5398 (10)
N1—C11.394 (8)C10—H10A0.9700
N1—C101.479 (9)C10—H10B0.9700
O1—C91.307 (8)C10—H10C0.9700
O1—H10.8200C10—H10D0.9700
O2—C71.299 (8)C11A—C121.5396 (10)
O2—H20.8200C11A—H11A0.9700
O3—C131.243 (10)C11A—H11B0.9700
O4—C131.292 (9)C11B—C121.5397 (10)
O4—C141.476 (9)C11B—H11C0.9700
C1—C61.378 (9)C11B—H11D0.9700
C1—C21.411 (10)C12—H12A0.9700
C2—C31.370 (10)C12—H12B0.9700
C2—C121.467 (11)C12—H12C0.9700
C3—C41.358 (10)C12—H12D0.9700
C3—H30.9300C14—C151.5395 (10)
C4—C51.334 (10)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C61.411 (9)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.462 (10)C15—H15C0.9600
Br2i—Br1—Br2180.0C11B—C10—H10D109.7
Br4ii—Br3—Br4180.00 (8)H10A—C10—H10D66.6
C9—N1—C1120.0 (6)H10C—C10—H10D108.2
C9—N1—C10116.4 (6)C12—C11A—C10113.6 (7)
C1—N1—C10123.6 (6)C12—C11A—H11A108.9
C9—O1—H1109.5C10—C11A—H11A108.9
C7—O2—H2109.5C12—C11A—H11B108.9
C13—O4—C14112.8 (7)C10—C11A—H11B108.9
C6—C1—N1120.4 (6)H11A—C11A—H11B107.7
C6—C1—C2120.1 (6)C12—C11B—C10113.6 (7)
N1—C1—C2119.5 (6)C12—C11B—H11C108.9
C3—C2—C1116.7 (7)C10—C11B—H11C108.9
C3—C2—C12120.4 (8)C12—C11B—H11D108.9
C1—C2—C12122.9 (6)C10—C11B—H11D108.9
C4—C3—C2123.5 (8)H11C—C11B—H11D107.7
C4—C3—H3118.3C2—C12—C11A112.3 (9)
C2—C3—H3118.3C2—C12—C11B109.9 (10)
C5—C4—C3120.2 (7)C2—C12—H12A109.1
C5—C4—H4119.9C11A—C12—H12A109.1
C3—C4—H4119.9C11B—C12—H12A68.9
C4—C5—C6119.7 (7)C2—C12—H12B109.1
C4—C5—H5120.1C11A—C12—H12B109.1
C6—C5—H5120.1C11B—C12—H12B139.4
C1—C6—C5119.7 (7)H12A—C12—H12B107.9
C1—C6—C7119.5 (6)C2—C12—H12C109.7
C5—C6—C7120.7 (7)C11A—C12—H12C136.4
O2—C7—C8126.0 (7)C11B—C12—H12C109.7
O2—C7—C6115.3 (6)H12B—C12—H12C66.2
C8—C7—C6118.7 (7)C2—C12—H12D109.7
C7—C8—C9118.7 (7)C11A—C12—H12D67.7
C7—C8—C13124.5 (7)C11B—C12—H12D109.7
C9—C8—C13116.7 (7)H12A—C12—H12D138.7
O1—C9—N1116.0 (7)H12B—C12—H12D45.0
O1—C9—C8121.3 (8)H12C—C12—H12D108.2
N1—C9—C8122.6 (6)O3—C13—O4125.5 (8)
N1—C10—C11A111.1 (8)O3—C13—C8120.9 (9)
N1—C10—C11B109.7 (9)O4—C13—C8113.6 (7)
N1—C10—H10A109.4O4—C14—C15106.3 (8)
C11A—C10—H10A109.4O4—C14—H14A110.5
C11B—C10—H10A139.2C15—C14—H14A110.5
N1—C10—H10B109.4O4—C14—H14B110.5
C11A—C10—H10B109.4C15—C14—H14B110.5
C11B—C10—H10B68.8H14A—C14—H14B108.7
H10A—C10—H10B108.0C14—C15—H15A109.5
N1—C10—H10C109.7C14—C15—H15B109.5
C11A—C10—H10C68.1H15A—C15—H15B109.5
C11B—C10—H10C109.7C14—C15—H15C109.5
H10B—C10—H10C138.4H15A—C15—H15C109.5
N1—C10—H10D109.7H15B—C15—H15C109.5
C11A—C10—H10D137.5
C9—N1—C1—C60.6 (8)C10—N1—C9—C8179.9 (6)
C10—N1—C1—C6179.4 (5)C7—C8—C9—O1178.7 (6)
C9—N1—C1—C2179.1 (6)C13—C8—C9—O14.2 (9)
C10—N1—C1—C20.3 (9)C7—C8—C9—N10.2 (9)
C6—C1—C2—C31.5 (9)C13—C8—C9—N1176.9 (6)
N1—C1—C2—C3178.8 (6)C9—N1—C10—C11A155.4 (8)
C6—C1—C2—C12177.9 (7)C1—N1—C10—C11A23.5 (10)
N1—C1—C2—C121.8 (10)C9—N1—C10—C11B157.4 (8)
C1—C2—C3—C43.0 (12)C1—N1—C10—C11B23.7 (10)
C12—C2—C3—C4176.4 (7)N1—C10—C11A—C1245.2 (15)
C2—C3—C4—C54.4 (13)C11B—C10—C11A—C1251.8 (8)
C3—C4—C5—C64.0 (11)N1—C10—C11B—C1248.6 (16)
N1—C1—C6—C5178.9 (5)C11A—C10—C11B—C1251.8 (8)
C2—C1—C6—C51.4 (9)C3—C2—C12—C11A158.5 (10)
N1—C1—C6—C71.0 (8)C1—C2—C12—C11A20.9 (12)
C2—C1—C6—C7179.3 (6)C3—C2—C12—C11B154.1 (9)
C4—C5—C6—C12.6 (10)C1—C2—C12—C11B26.5 (11)
C4—C5—C6—C7179.5 (7)C10—C11A—C12—C244.3 (16)
C1—C6—C7—O2178.5 (5)C10—C11A—C12—C11B51.8 (8)
C5—C6—C7—O20.6 (9)C10—C11B—C12—C250.2 (17)
C1—C6—C7—C82.2 (8)C10—C11B—C12—C11A51.8 (8)
C5—C6—C7—C8179.9 (6)C14—O4—C13—O33.2 (11)
O2—C7—C8—C9179.0 (6)C14—O4—C13—C8175.7 (6)
C6—C7—C8—C91.8 (9)C7—C8—C13—O3178.0 (7)
O2—C7—C8—C134.1 (11)C9—C8—C13—O31.0 (10)
C6—C7—C8—C13175.1 (6)C7—C8—C13—O41.0 (10)
C1—N1—C9—O1180.0 (5)C9—C8—C13—O4177.9 (6)
C10—N1—C9—O11.1 (8)C13—O4—C14—C15155.4 (8)
C1—N1—C9—C81.0 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.821.932.631 (7)142
O1—H1···O30.821.732.459 (10)147
C3—H3···Br1iii0.932.903.810 (9)168
C4—H4···Br2iv0.933.063.846 (9)143
C10—H10B···Br20.972.993.936 (8)166
C10—H10C···Br4ii0.972.923.752 (8)144
C11A—H11B···Br4ii0.973.023.797 (17)138
Symmetry codes: (ii) x, y, z; (iii) x1, y, z; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC15H16NO4+·Br3
Mr513.99
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.6491 (8), 9.1729 (10), 13.3722 (14)
α, β, γ (°)102.355 (9), 98.777 (9), 98.093 (9)
V3)891.06 (17)
Z2
Radiation typeMo Kα
µ (mm1)6.81
Crystal size (mm)0.20 × 0.05 × 0.05
Data collection
DiffractometerAgilent Xcalibur-3 CCD
Absorption correctionMulti-scan
(CrysAlis RED; Agilent, 2011)
Tmin, Tmax0.343, 0.727
No. of measured, independent and
observed [I > 2σ(I)] reflections
10147, 5106, 1855
Rint0.034
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.217, 0.90
No. of reflections5106
No. of parameters224
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.74

Computer programs: CrysAlis CCD (Agilent, 2011), CrysAlis RED (Agilent, 2011), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.821.932.631 (7)142.3
O1—H1···O30.821.732.459 (10)147.1
C3—H3···Br1i0.932.903.810 (9)167.6
C4—H4···Br2ii0.933.063.846 (9)142.7
C10—H10B···Br20.972.993.936 (8)166.4
C10—H10C···Br4iii0.972.923.752 (8)144.4
C11A—H11B···Br4iii0.973.023.797 (17)137.8
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x, y, z.
 

References

First citationAgilent (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Sidorenko, L. V., Rybakov, V. B. & Chernyshev, V. V. (2004). Zh. Org. Farm. Khim. 2, 26–31.  CAS Google Scholar
First citationUkrainets, I. V., Sidorenko, L. V. & Golovchenko, O. S. (2007). Chem. Heterocycl. Compd, pp. 1008–1013.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds