[Journal logo]

Volume 69 
Part 1 
Pages m63-m64  
January 2013  

Received 25 November 2012
Accepted 13 December 2012
Online 22 December 2012

Key indicators
Single-crystal X-ray study
T = 294 K
Mean [sigma](C-C) = 0.007 Å
Disorder in solvent or counterion
R = 0.056
wR = 0.170
Data-to-parameter ratio = 15.6
Details
Open access

Tris(1,10-phenanthroline-[kappa]2N,N')nickel(II) hexaoxido-[mu]-peroxido-disulfate(VI) N,N-dimethylformamide disolvate monohydrate

aFacultad de Ciencias Naturales, Universidad Nacional de la Patagonia S.J.B., Sede Trelew, 9100 Trelew, Chubut, Argentina,bCenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina,cDepartamento de Química Inorgánica, Analítica y Química, Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina, and dGerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
Correspondence e-mail: unharvey@cenpat.edu.ar, seba@qi.fcen.uba.ar

The asymmetric unit of the title complex, [Ni(C12H8N2)3]S2O8·2C3H7NO·H2O, consists of a complex [Ni(phen)3]2+ cation and one isolated pds anion, with two DMF molecules and one water molecule as solvates (where phen is 1,10-phenanthroline, pds is the hexaoxido-[mu]-peroxoido-disulfate dianion and DMF is dimethylformamide). The [Ni(phen)3]2+ cation is regular, with an almost ideal NiII bond-valence sum of 2.07 v.u. The group, as well as the water solvent molecule, are well behaved in terms of crystallographic order, but the remaining three molecules in the structure display different kinds of disorder, viz. the two DMF molecules mimic a twofold splitting and the pds anion has both S atoms clamped at well-determined positions but with a not-too-well-defined central part. These peculiar behaviours are a consequence of the hydrogen-bonding interactions: the outermost SO3 parts of the pds anion are heavily connected to the complex cations via C-H...O hydrogen bonding, generating an [Ni(phen)3]pds network and providing for the stability of the terminal pds sites. Also, the water solvent molecule is strongly bound to the structure (being a donor of two strong bonds and an acceptor of one) and is accordingly perfectly ordered. The peroxide O atoms in the pds middle region, instead, appear as much less restrained into their sites, which may explain their tendency to disorder. The cation-anion network leaves large embedded holes, amounting to about 28% of the total crystal volume, which are occupied by the DMF molecules. The latter are weakly interacting with the rest of the structure, which renders them much more labile and, accordingly, prone to disorder.

Related literature

For information on structures with coordinated pds, see: Youngme et al. (2007[Youngme, S., Wannarit, N., Pakawatchai, C., Chaichit, N., Somsook, E., Turpeinen, U. & Mutikainen, I. (2007). Polyhedron, 26, 1459-1468.]); Manson et al. (2009[Manson, J. L., Stone, K. H., Southerland, H. I., Lancaster, T., Steele, A. J., Blundell, S. J., Pratt, F. L., Baker, P. J., McDonald, R. D., Sengupta, P., Singleton, J., Goddard, P. A., Lee, C., Whangbo, M.-H., Warter, M. M., Mielke, C. H. & Stephens, P. W. (2009). J. Am. Chem. Soc. 131, 4590-4591.]); Harrison & Hathaway (1980[Harrison, W. D. & Hathaway, B. J. (1980). Acta Cryst. B36, 1069-1074.]); Blackman et al. (1991[Blackman, A. G., Huffman, J. C., Lobkovsky, E. B. & Christov, G. (1991). Chem. Commun. pp. 989-990.]); Harvey et al. (2011[Harvey, M. A., Diaz de Vivar, M. E., Baggio, R. & Baggio, S. (2011). J. Chem. Crystallogr. 41, 1717-1721.]) and references therein. For examples of structurers with non-coordinating pds groups, see Baffert et al. (2009[Baffert, C., Orio, M., Pantazis, D. A., Duboc, C., Blackman, A. G., Blondin, G., Neese, F., Deronzier, A. & Collomb, M.-N. (2009). Inorg. Chem. 48, 10281-10288.]); Harvey et al. (2004[Harvey, M. A., Baggio, S., Ibañez, A. & Baggio, R. (2004). Acta Cryst. C60, m375-m381.], 2005[Harvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2005). J. Coord. Chem. 58, 243-253.]); Youngme et al. (2008[Youngme, S., Phatchimkun, J., Wannarit, N., Chaichit, N., Meejoo, S., van Albada, G. A. & Reedijk, J. (2008). Polyhedron, 27, 304-318.]); Singh et al. (2009[Singh, A., Sharma, R. P., Ferretti, V., Rossetti, S. & Venugopalan, P. (2009). J. Mol. Struct. 927, 111-120.]). For details of bond-valence analysis and the vector bond-valence model, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) and Harvey et al. (2006[Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038-1042.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N2)3](S2O8)·2C3H7NO·H2O

  • Mr = 955.65

  • Triclinic, [P \overline 1]

  • a = 10.4832 (3) Å

  • b = 12.2221 (4) Å

  • c = 18.0044 (6) Å

  • [alpha] = 79.691 (3)°

  • [beta] = 76.725 (3)°

  • [gamma] = 76.190 (3)°

  • V = 2161.41 (12) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.62 mm-1

  • T = 294 K

  • 0.18 × 0.11 × 0.11 mm

Data collection
  • Oxford Diffraction Gemini CCD S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.945, Tmax = 0.952

  • 31646 measured reflections

  • 10070 independent reflections

  • 6165 reflections with I > 2[sigma](I)

  • Rint = 0.041

Refinement
  • R[F2 > 2[sigma](F2)] = 0.056

  • wR(F2) = 0.170

  • S = 1.04

  • 10070 reflections

  • 647 parameters

  • 246 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.65 e Å-3

  • [Delta][rho]min = -0.73 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1W-H1WA...O6i 0.85 (5) 2.02 (6) 2.839 (7) 160 (10)
O1W-H1WB...O1D'i 0.85 (7) 1.90 (7) 2.668 (10) 149 (7)
C3B-H3B...O1Wii 0.93 2.54 3.305 (8) 139
C1B-H1B...O3ii 0.93 2.55 3.192 (6) 126
C3A-H3A...O8 0.93 2.59 3.271 (6) 130
C3C-H3C...O1iii 0.93 2.43 3.337 (6) 164
C5A-H5A...O3 0.93 2.58 3.505 (7) 170
C5C-H5C...O2iii 0.93 2.53 3.365 (7) 150
C6B-H6B...O1i 0.93 2.53 3.434 (5) 163
C6C-H6C...O2iv 0.93 2.56 3.409 (6) 151
C8C-H8C...O3iv 0.93 2.30 3.197 (6) 162
C10A-H10A...O8v 0.93 2.48 3.220 (6) 137
C10C-H10C...O1E' 0.93 2.59 3.228 (19) 126
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) x-1, y-1, z; (iv) -x+1, -y+1, -z; (v) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2216 ).


Acknowledgements

The authors acknowledge the ANPCyT (project No. PME 2006-01113) for the purchase of the Oxford Gemini CCD diffractometer and the Spanish Research Council (CSIC) for provision of a free-of-charge license to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.  [ISI] [CrossRef] [details]
Baffert, C., Orio, M., Pantazis, D. A., Duboc, C., Blackman, A. G., Blondin, G., Neese, F., Deronzier, A. & Collomb, M.-N. (2009). Inorg. Chem. 48, 10281-10288.  [CrossRef] [PubMed] [ChemPort]
Blackman, A. G., Huffman, J. C., Lobkovsky, E. B. & Christov, G. (1991). Chem. Commun. pp. 989-990.
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.  [CrossRef] [ISI] [details]
Harrison, W. D. & Hathaway, B. J. (1980). Acta Cryst. B36, 1069-1074.  [CrossRef] [details] [ISI]
Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038-1042.  [ISI] [CrossRef] [details]
Harvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2005). J. Coord. Chem. 58, 243-253.  [ISI] [CrossRef] [ChemPort]
Harvey, M. A., Baggio, S., Ibañez, A. & Baggio, R. (2004). Acta Cryst. C60, m375-m381.  [CSD] [CrossRef] [details]
Harvey, M. A., Diaz de Vivar, M. E., Baggio, R. & Baggio, S. (2011). J. Chem. Crystallogr. 41, 1717-1721.  [CrossRef] [ChemPort]
Manson, J. L., Stone, K. H., Southerland, H. I., Lancaster, T., Steele, A. J., Blundell, S. J., Pratt, F. L., Baker, P. J., McDonald, R. D., Sengupta, P., Singleton, J., Goddard, P. A., Lee, C., Whangbo, M.-H., Warter, M. M., Mielke, C. H. & Stephens, P. W. (2009). J. Am. Chem. Soc. 131, 4590-4591.  [CrossRef] [PubMed] [ChemPort]
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Singh, A., Sharma, R. P., Ferretti, V., Rossetti, S. & Venugopalan, P. (2009). J. Mol. Struct. 927, 111-120.  [CrossRef] [ChemPort]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Youngme, S., Phatchimkun, J., Wannarit, N., Chaichit, N., Meejoo, S., van Albada, G. A. & Reedijk, J. (2008). Polyhedron, 27, 304-318.  [CrossRef] [ChemPort]
Youngme, S., Wannarit, N., Pakawatchai, C., Chaichit, N., Somsook, E., Turpeinen, U. & Mutikainen, I. (2007). Polyhedron, 26, 1459-1468.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, m63-m64   [ doi:10.1107/S1600536812050775 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.