organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 27-oxo-15-oxa-2,20-di­aza­hexa­cyclo­[18.6.1.01,8.02,6.09,14.021,26]hepta­cosa-9,11,13,21,23,25-hexa­ene-7-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 10 November 2012; accepted 29 November 2012; online 5 December 2012)

In the title compound, C27H30N2O4, the pyrrolidine ring adopts a twisted conformation. The indoline ring system is almost perpendicular to the mean plane of the pyrrolidine ring, making a dihedral angle of 81.7 (8)°. In the crystal, mol­ecules are linked into centrosymmetric dimers with graph-set motif R22(16) via pairs of C—H⋯O hydrogen bonds. The terminal ethyl group of the ester group is disordered over two sets of sites, with a site-occupancy ratio of 0.587 (11):0.413 (11).

Related literature

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003[Obniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszynska, B., Klodzinska, A., Tatarczynska, E. & Chojnacka-Wojcik, E. (2003). Pol. J. Pharmacol. 55, 553-557.]); Peddi et al. (2004[Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279-2283.]); Christoph et al. (2011[Christoph, W. Z., Jonathan, D. B., Zhong, L., Russell, G. D., Thomas, N., Mercy, O., Antonia, N., Jennifer, M. G., Hao, L., Judy, L., Frank, B., Erik, V., Andrea, O., Mark, J. & Jeremy, I. L. (2011). Bioorg. Med. Chem. Lett. 21, 4602-4607.]); Stylianakis et al. (2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]); Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]); Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]); Huryn et al. (1991[Huryn, D. M., Trost, B. M. & Fleming, I. (1991). C. Org. Synth. 1, 64-74.]). For a related structure, see: Ganesh et al. (2012[Ganesh, G., Yuvaraj, P. S., Govindan, E., Reddy, B. S. R. & SubbiahPandi, A. (2012). Acta Cryst. E68, o2902-o2903.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Nardelli et al. (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H30N2O4

  • Mr = 446.53

  • Triclinic, [P \overline 1]

  • a = 8.9327 (5) Å

  • b = 10.0068 (5) Å

  • c = 14.6379 (11) Å

  • α = 103.988 (4)°

  • β = 95.023 (4)°

  • γ = 113.775 (3)°

  • V = 1136.41 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.978

  • 20472 measured reflections

  • 5603 independent reflections

  • 4378 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.08

  • 5603 reflections

  • 319 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.49 3.3957 (19) 164
C12—H12⋯O2ii 0.93 2.59 3.446 (2) 153
C13—H13⋯O4ii 0.93 2.47 3.3986 (17) 175
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonists (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticancer (Christoph et al., 2011) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of these importance and in continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles are within normal ranges and comparable to those found in related structures (Ganesh et al., 2012). Terminal atoms C1 & C2 is substituted at propanate group, which is disordered over two positions [C1A/C1B & C2A/C2B] with a site-occupancy ratio of 0.604 (5):0.396 (5). The sum of the angles at N1 & N2 [339 (1)° & 348.7 (1)°] of the pyrrolidine and indole rings are in accordance with sp3 hybridization.

The indoline ring system is essentially planar, with maximum deviation of 0.038 (2) Å for atom C16. The pyrrolidine ring system makes dihedral angle of 81.7 (8)° with the indoline ring system, it clearly shows that both the rings are perpendicular to each other. The propanate group assumes an extended conformation which can be seen from the torsion angle [C4/C3/O2/C2= 179.3 (2)°].

The dihedral angle of the pyrrolidine ring and the benzene ring (C21—C26) is 36.5 (1)°. The atom O4 deviates by 0.102 (1) Å from the leastsquares plane of the indole ring. The pyrrolidine ring adopts twisted conformation [it is twisted about C1—C2], with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameter, Δs, (Nardelli et al., 1983) as follows: q2=0.4071 (2) Å, φ=82.0 (8)°, Δs(C4)=7.61 (2). The crystal packing is stabilized by C—H···O interactions.

Related literature top

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Christoph et al. (2011); Stylianakis et al. (2003); Waldmann (1995); Suzuki et al. (1994); Huryn et al. (1991). For a related structure, see: Ganesh et al. (2012). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli et al. (1983).

Experimental top

A solution of (E)-ethyl 3-(2-(4-(2,3-dioxoindolin-1-yl)butoxy)phenyl)acrylate (200 mg, 0.5 mmol) and L-proline (70 mg, 0.61 mmol) was refluxed in dry toluene under N2 atmosphere for 8hrs under Dean-Stark apparatus. After the completion of reaction as indicated by TLC, toluene was evaporated under reduced pressure. The crude product was washed with water and extracted with dichloromethane (4x20mL). The combined organic layers were dried (MgSO4) and filtered, concentrated in vacuum. The crude product was purified by column chromatography using hexane: EtOAc (8:2) as eluent.

Refinement top

Atoms C1 and C2 are disordered over two positions (C1A/C1B & C2A/C2B) with refined occupancies of 0.587 (11):0.413 (11). The O-C and C-C distances of the disordered atoms were restrained to be equal. The displacement parameters of the disordered atoms were restrained to be equal for bonded atoms. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H, 1.2Ueq(C) for other H atoms.

Structure description top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonists (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticancer (Christoph et al., 2011) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of these importance and in continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths and angles are within normal ranges and comparable to those found in related structures (Ganesh et al., 2012). Terminal atoms C1 & C2 is substituted at propanate group, which is disordered over two positions [C1A/C1B & C2A/C2B] with a site-occupancy ratio of 0.604 (5):0.396 (5). The sum of the angles at N1 & N2 [339 (1)° & 348.7 (1)°] of the pyrrolidine and indole rings are in accordance with sp3 hybridization.

The indoline ring system is essentially planar, with maximum deviation of 0.038 (2) Å for atom C16. The pyrrolidine ring system makes dihedral angle of 81.7 (8)° with the indoline ring system, it clearly shows that both the rings are perpendicular to each other. The propanate group assumes an extended conformation which can be seen from the torsion angle [C4/C3/O2/C2= 179.3 (2)°].

The dihedral angle of the pyrrolidine ring and the benzene ring (C21—C26) is 36.5 (1)°. The atom O4 deviates by 0.102 (1) Å from the leastsquares plane of the indole ring. The pyrrolidine ring adopts twisted conformation [it is twisted about C1—C2], with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameter, Δs, (Nardelli et al., 1983) as follows: q2=0.4071 (2) Å, φ=82.0 (8)°, Δs(C4)=7.61 (2). The crystal packing is stabilized by C—H···O interactions.

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Christoph et al. (2011); Stylianakis et al. (2003); Waldmann (1995); Suzuki et al. (1994); Huryn et al. (1991). For a related structure, see: Ganesh et al. (2012). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli et al. (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for figure clarity.
[Figure 2] Fig. 2. The crystal structure showing the formation of the centrosymmetric R22(16) dimer. H atoms are not involed in hydrogen bonds have been omitted.
Ethyl 27-oxo-15-oxa-2,20- diazahexacyclo[18.6.1.01,8.02,6.09,14.021,26]heptacosa- 9,11,13,21,23,25-hexaene-7-carboxylate top
Crystal data top
C27H30N2O4Z = 2
Mr = 446.53F(000) = 476
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9327 (5) ÅCell parameters from 5603 reflections
b = 10.0068 (5) Åθ = 1.5–28.3°
c = 14.6379 (11) ŵ = 0.09 mm1
α = 103.988 (4)°T = 293 K
β = 95.023 (4)°Block, white crystalline
γ = 113.775 (3)°0.30 × 0.30 × 0.25 mm
V = 1136.41 (13) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5603 independent reflections
Radiation source: fine-focus sealed tube4378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.974, Tmax = 0.978k = 1313
20472 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.215P]
where P = (Fo2 + 2Fc2)/3
5603 reflections(Δ/σ)max = 0.002
319 parametersΔρmax = 0.23 e Å3
40 restraintsΔρmin = 0.22 e Å3
Crystal data top
C27H30N2O4γ = 113.775 (3)°
Mr = 446.53V = 1136.41 (13) Å3
Triclinic, P1Z = 2
a = 8.9327 (5) ÅMo Kα radiation
b = 10.0068 (5) ŵ = 0.09 mm1
c = 14.6379 (11) ÅT = 293 K
α = 103.988 (4)°0.30 × 0.30 × 0.25 mm
β = 95.023 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5603 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4378 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.978Rint = 0.025
20472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04540 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
5603 reflectionsΔρmin = 0.22 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.0430 (10)1.0338 (8)0.2839 (4)0.0877 (18)0.587 (11)
H1A10.01251.03580.23060.132*0.587 (11)
H1A20.07301.11740.29750.132*0.587 (11)
H1A30.14200.93860.26800.132*0.587 (11)
C2A0.0677 (12)1.0483 (8)0.3675 (6)0.089 (3)0.587 (11)
H2A10.01881.05990.42380.106*0.587 (11)
H2A20.17401.13760.37950.106*0.587 (11)
C1B0.0656 (17)1.0966 (9)0.2980 (6)0.088 (3)0.413 (11)
H1B10.18451.15620.31830.131*0.413 (11)
H1B20.01301.16390.30030.131*0.413 (11)
H1B30.03931.03040.23340.131*0.413 (11)
C2B0.0054 (13)1.0057 (11)0.3611 (9)0.072 (3)0.413 (11)
H2B10.11490.94510.34260.086*0.413 (11)
H2B20.03461.06960.42740.086*0.413 (11)
C30.21727 (18)0.92280 (15)0.41102 (10)0.0423 (3)
C40.26073 (15)0.78973 (13)0.38728 (9)0.0328 (3)
H40.37920.82810.41590.039*
C50.15967 (15)0.66458 (14)0.43037 (9)0.0346 (3)
H50.04100.64190.41750.042*
C60.22279 (18)0.69639 (17)0.53715 (10)0.0466 (3)
H6A0.27080.80510.57130.056*
H6B0.13340.64160.56640.056*
C70.3552 (2)0.63749 (19)0.53718 (11)0.0550 (4)
H7A0.46010.71150.52930.066*
H7B0.37430.61300.59600.066*
C80.2771 (2)0.49510 (18)0.45101 (11)0.0503 (4)
H8A0.36280.47110.42510.060*
H8B0.20220.40820.46870.060*
C90.24212 (14)0.55059 (13)0.28972 (9)0.0314 (2)
C100.40719 (14)0.54634 (14)0.28034 (9)0.0335 (3)
C110.56843 (16)0.64768 (16)0.32716 (11)0.0433 (3)
H110.59070.73890.37360.052*
C120.69804 (17)0.6109 (2)0.30370 (12)0.0531 (4)
H120.80790.67930.33420.064*
C130.66598 (19)0.4754 (2)0.23631 (12)0.0552 (4)
H130.75410.45210.22310.066*
C140.50416 (19)0.37281 (19)0.18772 (11)0.0491 (4)
H140.48210.28100.14190.059*
C150.37664 (16)0.41162 (15)0.20968 (9)0.0373 (3)
C160.11869 (15)0.40657 (14)0.20770 (9)0.0362 (3)
C170.1341 (2)0.19559 (16)0.08382 (11)0.0528 (4)
H17A0.01350.14690.07690.063*
H17B0.17530.12260.09270.063*
C180.1747 (2)0.23314 (18)0.00835 (11)0.0552 (4)
H18A0.13720.13760.05970.066*
H18B0.29530.28690.00040.066*
C190.0979 (2)0.33016 (19)0.04075 (11)0.0568 (4)
H19A0.06210.29150.11030.068*
H19B0.00130.31540.01420.068*
C200.2087 (2)0.49895 (18)0.01325 (10)0.0531 (4)
H20A0.31920.51570.02480.064*
H20B0.16350.54450.05280.064*
C210.33250 (17)0.72236 (15)0.12529 (10)0.0396 (3)
C220.4290 (2)0.80905 (19)0.07220 (11)0.0536 (4)
H220.41660.76510.00660.064*
C230.5431 (2)0.95975 (19)0.11637 (12)0.0592 (4)
H230.60821.01650.08060.071*
C240.5606 (2)1.02605 (18)0.21268 (12)0.0565 (4)
H240.63791.12740.24270.068*
C250.46165 (18)0.94020 (16)0.26501 (11)0.0473 (3)
H250.47360.98630.33020.057*
C260.34589 (15)0.78868 (14)0.22383 (9)0.0350 (3)
C270.23201 (14)0.69994 (13)0.28114 (8)0.0314 (2)
H270.11650.67100.25100.038*
N10.18398 (13)0.53096 (12)0.37981 (7)0.0361 (2)
N20.20527 (14)0.32851 (12)0.16915 (8)0.0398 (3)
O10.28603 (18)1.03033 (14)0.48165 (9)0.0743 (4)
O20.09278 (16)0.90670 (14)0.34755 (9)0.0684 (3)
O30.22133 (12)0.57163 (11)0.08703 (6)0.0447 (2)
O40.03046 (11)0.36456 (11)0.18380 (7)0.0494 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.106 (4)0.079 (3)0.104 (3)0.063 (3)0.008 (3)0.038 (3)
C2A0.119 (6)0.077 (4)0.087 (4)0.078 (4)0.009 (4)0.002 (3)
C1B0.131 (7)0.069 (4)0.074 (4)0.046 (4)0.027 (4)0.032 (3)
C2B0.092 (5)0.072 (4)0.087 (6)0.058 (4)0.041 (5)0.038 (4)
C30.0498 (7)0.0370 (7)0.0411 (8)0.0205 (6)0.0135 (6)0.0094 (6)
C40.0343 (6)0.0329 (6)0.0297 (6)0.0152 (5)0.0065 (5)0.0064 (5)
C50.0346 (6)0.0354 (6)0.0328 (6)0.0155 (5)0.0097 (5)0.0072 (5)
C60.0565 (8)0.0451 (8)0.0320 (7)0.0163 (6)0.0131 (6)0.0103 (6)
C70.0570 (9)0.0661 (10)0.0420 (8)0.0227 (8)0.0038 (7)0.0265 (7)
C80.0655 (9)0.0601 (9)0.0476 (9)0.0391 (8)0.0218 (7)0.0304 (7)
C90.0315 (5)0.0331 (6)0.0300 (6)0.0157 (5)0.0067 (5)0.0075 (5)
C100.0341 (6)0.0377 (6)0.0340 (6)0.0193 (5)0.0086 (5)0.0128 (5)
C110.0360 (6)0.0470 (8)0.0474 (8)0.0183 (6)0.0062 (6)0.0162 (6)
C120.0349 (7)0.0702 (10)0.0638 (10)0.0254 (7)0.0118 (7)0.0319 (9)
C130.0528 (8)0.0895 (12)0.0568 (10)0.0507 (9)0.0274 (7)0.0396 (9)
C140.0629 (9)0.0646 (9)0.0431 (8)0.0460 (8)0.0218 (7)0.0208 (7)
C150.0433 (7)0.0437 (7)0.0347 (7)0.0255 (6)0.0126 (5)0.0156 (5)
C160.0379 (6)0.0353 (6)0.0342 (7)0.0161 (5)0.0082 (5)0.0081 (5)
C170.0673 (9)0.0375 (7)0.0460 (9)0.0239 (7)0.0076 (7)0.0002 (6)
C180.0703 (10)0.0500 (9)0.0403 (8)0.0310 (8)0.0085 (7)0.0018 (7)
C190.0667 (10)0.0619 (10)0.0342 (8)0.0330 (8)0.0024 (7)0.0020 (7)
C200.0743 (10)0.0599 (9)0.0305 (7)0.0375 (8)0.0112 (7)0.0090 (6)
C210.0473 (7)0.0439 (7)0.0353 (7)0.0260 (6)0.0094 (6)0.0148 (6)
C220.0738 (10)0.0600 (9)0.0394 (8)0.0345 (8)0.0225 (7)0.0230 (7)
C230.0705 (10)0.0612 (10)0.0576 (10)0.0276 (8)0.0278 (8)0.0351 (8)
C240.0612 (9)0.0471 (8)0.0554 (10)0.0138 (7)0.0143 (8)0.0226 (7)
C250.0530 (8)0.0448 (8)0.0388 (8)0.0155 (6)0.0103 (6)0.0140 (6)
C260.0392 (6)0.0386 (6)0.0322 (6)0.0201 (5)0.0081 (5)0.0134 (5)
C270.0331 (6)0.0327 (6)0.0287 (6)0.0164 (5)0.0046 (5)0.0072 (5)
N10.0436 (6)0.0373 (6)0.0323 (6)0.0210 (5)0.0125 (4)0.0115 (4)
N20.0451 (6)0.0357 (6)0.0365 (6)0.0207 (5)0.0071 (5)0.0024 (4)
O10.0918 (9)0.0525 (7)0.0627 (8)0.0368 (7)0.0019 (7)0.0139 (6)
O20.0874 (8)0.0622 (7)0.0668 (8)0.0558 (7)0.0023 (6)0.0045 (6)
O30.0589 (6)0.0458 (5)0.0286 (5)0.0243 (5)0.0090 (4)0.0078 (4)
O40.0336 (5)0.0502 (6)0.0515 (6)0.0142 (4)0.0025 (4)0.0029 (5)
Geometric parameters (Å, º) top
C1A—C2A1.443 (6)C11—C121.3947 (19)
C1A—H1A10.9600C11—H110.9300
C1A—H1A20.9600C12—C131.373 (2)
C1A—H1A30.9600C12—H120.9300
C2A—O21.487 (5)C13—C141.385 (2)
C2A—H2A10.9700C13—H130.9300
C2A—H2A20.9700C14—C151.3827 (18)
C1B—C2B1.438 (7)C14—H140.9300
C1B—H1B10.9600C15—N21.4011 (17)
C1B—H1B20.9600C16—O41.2123 (15)
C1B—H1B30.9600C16—N21.3701 (16)
C2B—O21.478 (6)C17—N21.4524 (18)
C2B—H2B10.9700C17—C181.521 (2)
C2B—H2B20.9700C17—H17A0.9700
C3—O11.1925 (18)C17—H17B0.9700
C3—O21.3145 (18)C18—C191.530 (2)
C3—C41.5038 (17)C18—H18A0.9700
C4—C51.5333 (16)C18—H18B0.9700
C4—C271.5351 (17)C19—C201.500 (2)
C4—H40.9800C19—H19A0.9700
C5—N11.4720 (16)C19—H19B0.9700
C5—C61.5241 (19)C20—O31.4440 (16)
C5—H50.9800C20—H20A0.9700
C6—C71.520 (2)C20—H20B0.9700
C6—H6A0.9700C21—O31.3643 (16)
C6—H6B0.9700C21—C221.3930 (19)
C7—C81.511 (2)C21—C261.4064 (18)
C7—H7A0.9700C22—C231.380 (2)
C7—H7B0.9700C22—H220.9300
C8—N11.4756 (17)C23—C241.370 (2)
C8—H8A0.9700C23—H230.9300
C8—H8B0.9700C24—C251.3896 (19)
C9—N11.4867 (15)C24—H240.9300
C9—C101.5093 (15)C25—C261.3843 (19)
C9—C161.5442 (17)C25—H250.9300
C9—C271.5669 (16)C26—C271.5194 (16)
C10—C111.3734 (18)C27—H270.9800
C10—C151.3934 (18)
C1A—C2A—O2107.4 (5)C14—C13—H13119.5
C1A—C2A—H2A1110.2C15—C14—C13117.71 (14)
O2—C2A—H2A1110.2C15—C14—H14121.1
C1A—C2A—H2A2110.2C13—C14—H14121.1
O2—C2A—H2A2110.2C14—C15—C10121.80 (13)
H2A1—C2A—H2A2108.5C14—C15—N2127.97 (13)
C2B—C1B—H1B1109.5C10—C15—N2110.23 (10)
C2B—C1B—H1B2109.5O4—C16—N2125.24 (12)
H1B1—C1B—H1B2109.5O4—C16—C9126.60 (11)
C2B—C1B—H1B3109.5N2—C16—C9108.07 (10)
H1B1—C1B—H1B3109.5N2—C17—C18113.75 (12)
H1B2—C1B—H1B3109.5N2—C17—H17A108.8
C1B—C2B—O2103.0 (6)C18—C17—H17A108.8
C1B—C2B—H2B1111.2N2—C17—H17B108.8
O2—C2B—H2B1111.2C18—C17—H17B108.8
C1B—C2B—H2B2111.2H17A—C17—H17B107.7
O2—C2B—H2B2111.2C17—C18—C19115.73 (13)
H2B1—C2B—H2B2109.1C17—C18—H18A108.3
O1—C3—O2123.36 (13)C19—C18—H18A108.3
O1—C3—C4123.34 (14)C17—C18—H18B108.3
O2—C3—C4113.27 (12)C19—C18—H18B108.3
C3—C4—C5111.85 (10)H18A—C18—H18B107.4
C3—C4—C27118.71 (10)C20—C19—C18116.20 (14)
C5—C4—C27102.81 (9)C20—C19—H19A108.2
C3—C4—H4107.6C18—C19—H19A108.2
C5—C4—H4107.6C20—C19—H19B108.2
C27—C4—H4107.6C18—C19—H19B108.2
N1—C5—C6105.91 (10)H19A—C19—H19B107.4
N1—C5—C4103.94 (9)O3—C20—C19110.62 (13)
C6—C5—C4115.22 (11)O3—C20—H20A109.5
N1—C5—H5110.5C19—C20—H20A109.5
C6—C5—H5110.5O3—C20—H20B109.5
C4—C5—H5110.5C19—C20—H20B109.5
C7—C6—C5103.05 (11)H20A—C20—H20B108.1
C7—C6—H6A111.2O3—C21—C22123.50 (13)
C5—C6—H6A111.2O3—C21—C26116.04 (11)
C7—C6—H6B111.2C22—C21—C26120.46 (13)
C5—C6—H6B111.2C23—C22—C21120.37 (14)
H6A—C6—H6B109.1C23—C22—H22119.8
C8—C7—C6102.04 (12)C21—C22—H22119.8
C8—C7—H7A111.4C24—C23—C22120.23 (14)
C6—C7—H7A111.4C24—C23—H23119.9
C8—C7—H7B111.4C22—C23—H23119.9
C6—C7—H7B111.4C23—C24—C25119.26 (15)
H7A—C7—H7B109.2C23—C24—H24120.4
N1—C8—C7105.66 (11)C25—C24—H24120.4
N1—C8—H8A110.6C26—C25—C24122.54 (14)
C7—C8—H8A110.6C26—C25—H25118.7
N1—C8—H8B110.6C24—C25—H25118.7
C7—C8—H8B110.6C25—C26—C21117.12 (12)
H8A—C8—H8B108.7C25—C26—C27121.56 (11)
N1—C9—C10116.46 (9)C21—C26—C27121.25 (11)
N1—C9—C16106.22 (9)C26—C27—C4114.73 (10)
C10—C9—C16101.89 (9)C26—C27—C9117.37 (9)
N1—C9—C27104.52 (9)C4—C27—C9101.60 (9)
C10—C9—C27115.18 (9)C26—C27—H27107.5
C16—C9—C27112.44 (9)C4—C27—H27107.5
C11—C10—C15119.80 (11)C9—C27—H27107.5
C11—C10—C9131.67 (12)C5—N1—C8108.13 (10)
C15—C10—C9108.54 (10)C5—N1—C9110.23 (9)
C10—C11—C12118.65 (14)C8—N1—C9120.66 (10)
C10—C11—H11120.7C16—N2—C15110.85 (10)
C12—C11—H11120.7C16—N2—C17123.63 (11)
C13—C12—C11121.05 (14)C15—N2—C17124.23 (11)
C13—C12—H12119.5C3—O2—C2B124.6 (5)
C11—C12—H12119.5C3—O2—C2A111.3 (3)
C12—C13—C14120.93 (13)C21—O3—C20117.33 (11)
C12—C13—H13119.5
O1—C3—C4—C589.09 (17)C22—C21—C26—C27175.06 (12)
O2—C3—C4—C589.09 (14)C25—C26—C27—C42.05 (16)
O1—C3—C4—C27151.44 (14)C21—C26—C27—C4178.96 (10)
O2—C3—C4—C2730.38 (16)C25—C26—C27—C9121.25 (13)
C3—C4—C5—N1165.51 (10)C21—C26—C27—C961.84 (15)
C27—C4—C5—N137.05 (11)C3—C4—C27—C2667.92 (14)
C3—C4—C5—C679.07 (14)C5—C4—C27—C26168.04 (9)
C27—C4—C5—C6152.47 (10)C3—C4—C27—C9164.39 (10)
N1—C5—C6—C728.37 (13)C5—C4—C27—C940.35 (11)
C4—C5—C6—C785.91 (13)N1—C9—C27—C26155.06 (10)
C5—C6—C7—C838.37 (13)C10—C9—C27—C2625.97 (15)
C6—C7—C8—N134.89 (14)C16—C9—C27—C2690.16 (12)
N1—C9—C10—C1170.23 (17)N1—C9—C27—C429.09 (11)
C16—C9—C10—C11174.70 (13)C10—C9—C27—C499.99 (11)
C27—C9—C10—C1152.69 (18)C16—C9—C27—C4143.88 (10)
N1—C9—C10—C15110.05 (12)C6—C5—N1—C86.82 (13)
C16—C9—C10—C155.02 (12)C4—C5—N1—C8115.00 (11)
C27—C9—C10—C15127.02 (11)C6—C5—N1—C9140.65 (10)
C15—C10—C11—C121.28 (19)C4—C5—N1—C918.83 (12)
C9—C10—C11—C12179.03 (12)C7—C8—N1—C517.71 (14)
C10—C11—C12—C131.0 (2)C7—C8—N1—C9110.39 (13)
C11—C12—C13—C141.7 (2)C10—C9—N1—C5121.72 (11)
C12—C13—C14—C150.2 (2)C16—C9—N1—C5125.67 (10)
C13—C14—C15—C102.1 (2)C27—C9—N1—C56.59 (12)
C13—C14—C15—N2178.71 (13)C10—C9—N1—C85.43 (16)
C11—C10—C15—C142.89 (19)C16—C9—N1—C8107.18 (12)
C9—C10—C15—C14177.35 (11)C27—C9—N1—C8133.74 (11)
C11—C10—C15—N2177.82 (11)O4—C16—N2—C15177.33 (12)
C9—C10—C15—N21.94 (14)C9—C16—N2—C155.83 (14)
N1—C9—C16—O460.93 (16)O4—C16—N2—C179.9 (2)
C10—C9—C16—O4176.69 (13)C9—C16—N2—C17173.31 (12)
C27—C9—C16—O452.82 (17)C14—C15—N2—C16178.20 (13)
N1—C9—C16—N2115.86 (10)C10—C15—N2—C162.56 (15)
C10—C9—C16—N26.52 (12)C14—C15—N2—C1710.8 (2)
C27—C9—C16—N2130.40 (10)C10—C15—N2—C17169.95 (12)
N2—C17—C18—C1966.50 (18)C18—C17—N2—C1696.75 (16)
C17—C18—C19—C2097.32 (18)C18—C17—N2—C1569.06 (18)
C18—C19—C20—O376.86 (17)O1—C3—O2—C2B9.2 (4)
O3—C21—C22—C23177.87 (14)C4—C3—O2—C2B169.0 (4)
C26—C21—C22—C232.2 (2)O1—C3—O2—C2A8.6 (5)
C21—C22—C23—C240.9 (3)C4—C3—O2—C2A173.2 (5)
C22—C23—C24—C250.4 (3)C1B—C2B—O2—C3106.8 (10)
C23—C24—C25—C260.6 (2)C1B—C2B—O2—C2A52.4 (13)
C24—C25—C26—C210.6 (2)C1A—C2A—O2—C3167.2 (7)
C24—C25—C26—C27176.39 (13)C1A—C2A—O2—C2B58.7 (15)
O3—C21—C26—C25178.04 (12)C22—C21—O3—C201.99 (19)
C22—C21—C26—C251.99 (19)C26—C21—O3—C20178.03 (11)
O3—C21—C26—C274.92 (17)C19—C20—O3—C21173.01 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.493.3957 (19)164
C12—H12···O2ii0.932.593.446 (2)153
C13—H13···O4ii0.932.473.3986 (17)175
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC27H30N2O4
Mr446.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9327 (5), 10.0068 (5), 14.6379 (11)
α, β, γ (°)103.988 (4), 95.023 (4), 113.775 (3)
V3)1136.41 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.974, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
20472, 5603, 4378
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.08
No. of reflections5603
No. of parameters319
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.493.3957 (19)164.0
C12—H12···O2ii0.932.593.446 (2)152.9
C13—H13···O4ii0.932.473.3986 (17)174.6
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SN thanks the University Grant Commission (UGC), Government of India, New Delhi, for a Meritorious Fellowship under the SAP programme.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristoph, W. Z., Jonathan, D. B., Zhong, L., Russell, G. D., Thomas, N., Mercy, O., Antonia, N., Jennifer, M. G., Hao, L., Judy, L., Frank, B., Erik, V., Andrea, O., Mark, J. & Jeremy, I. L. (2011). Bioorg. Med. Chem. Lett. 21, 4602–4607.  Web of Science PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGanesh, G., Yuvaraj, P. S., Govindan, E., Reddy, B. S. R. & SubbiahPandi, A. (2012). Acta Cryst. E68, o2902–o2903.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuryn, D. M., Trost, B. M. & Fleming, I. (1991). C. Org. Synth. 1, 64–74.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationObniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszynska, B., Klodzinska, A., Tatarczynska, E. & Chojnacka-Wojcik, E. (2003). Pol. J. Pharmacol. 55, 553–557.  Web of Science PubMed CAS Google Scholar
First citationPeddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds