[Journal logo]

Volume 69 
Part 1 
Pages m5-m6  
January 2013  

Received 16 November 2012
Accepted 27 November 2012
Online 5 December 2012

Key indicators
Single-crystal X-ray study
T = 193 K
Mean [sigma](C-C) = 0.003 Å
Disorder in main residue
R = 0.030
wR = 0.080
Data-to-parameter ratio = 15.1
Details
Open access

Bis[1-benzyl-2-(1,3-thiazol-4-yl)-1H-benzimidazole-[kappa]2N2,N3]dichloridocobalt(II)

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batouta, Rabat, Morocco,bInstitute of Nanomaterials and Nanotechnology, MAScIR, Avenue de l'Armée Royale, Rabat, Morocco,cLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco,dLaboratoire de Chimie de Coordination, Équipe Dendrimères et Hétérochimie, Toulouse, France, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
Correspondence e-mail: h_gueddar@yahoo.fr

In the title compound, [CoCl2(C17H13N3S)2], the CoII atom exhibits a distorted octahedral coordination geometry involving two chloride ligands, one of which is split over two positions [refined site-occupancy ratio = 0.847 (18):0.153 (18)], and four N-atom donors from two 1-benzyl-2-(1,3-thiazol-4-yl)-1H-benzimidazole ligands. The two chelate rings including the CoII atom are essentially planar, the maximum deviations from the mean planes being 0.080 (2) and 0.046 (2) Å; the dihedral angle between them is 74.1 (1)°. In both ligands, the thiazole and benzimidazole rings are nearly coplanar, as indicated by the dihedral angles between their planes of 1.16 (8) and 6.29 (7)°. Each pendant benzene ring is almost perpendicular to the benzimidazole molecule to which it is attached; the dihedral angles between their planes are 75.94 (9) and 75.55 (10)°. The crystal structure is stabilized by non-classical C-H...Cl hydrogen bonding forming a three-dimensional network.

Related literature

For background of the biochemical properties of thiabendazole [2-(4'-thiazolyl)benzimidazole], see: Devereux et al. (2007[Devereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.]); Kowala et al. (1971[Kowala, C., Murray, K. S., Swan, J. M. & West, B. O. (1971). Aust. J. Chem. 24, 1369-1375.]); Yan-Jua & Guang-Ganga (2009[Yan-Jua, C. U. & Guang-Ganga, L. I. (2009). Chin. J. Struct. Chem. 28, 434-438.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C17H13N3S)2]

  • Mr = 712.56

  • Triclinic, [P \overline 1]

  • a = 10.1311 (3) Å

  • b = 11.9582 (4) Å

  • c = 14.2633 (5) Å

  • [alpha] = 76.033 (3)°

  • [beta] = 75.536 (3)°

  • [gamma] = 69.707 (3)°

  • V = 1546.43 (9) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.90 mm-1

  • T = 193 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker Kappa APEXII Quazar area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.840

  • 11578 measured reflections

  • 6284 independent reflections

  • 5601 reflections with I > 2[sigma](I)

  • Rint = 0.011

Refinement
  • R[F2 > 2[sigma](F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.05

  • 6284 reflections

  • 417 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.95 e Å-3

  • [Delta][rho]min = -0.68 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C11-H11A...Cl2Ai 0.99 2.77 3.693 (2) 155
C14-H14...Cl1ii 0.95 2.69 3.584 (2) 157
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6860 ).


References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Devereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kedziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Kowala, C., Murray, K. S., Swan, J. M. & West, B. O. (1971). Aust. J. Chem. 24, 1369-1375.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Yan-Jua, C. U. & Guang-Ganga, L. I. (2009). Chin. J. Struct. Chem. 28, 434-438.


Acta Cryst (2013). E69, m5-m6   [ doi:10.1107/S1600536812048751 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.