metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-benzyl-2-(1,3-thia­zol-4-yl)-1H-benzimidazole-κ2N2,N3]di­chloridocobalt(II)

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batouta, Rabat, Morocco, bInstitute of Nanomaterials and Nanotechnology, MAScIR, Avenue de l'Armée Royale, Rabat, Morocco, cLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, dLaboratoire de Chimie de Coordination, Équipe Dendrimères et Hétérochimie, Toulouse, France, and eLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: h_gueddar@yahoo.fr

(Received 16 November 2012; accepted 27 November 2012; online 5 December 2012)

In the title compound, [CoCl2(C17H13N3S)2], the CoII atom exhibits a distorted octa­hedral coordination geometry involving two chloride ligands, one of which is split over two positions [refined site-occupancy ratio = 0.847 (18):0.153 (18)], and four N-atom donors from two 1-benzyl-2-(1,3-thia­zol-4-yl)-1H-benzimidazole ligands. The two chelate rings including the CoII atom are essentially planar, the maximum deviations from the mean planes being 0.080 (2) and 0.046 (2) Å; the dihedral angle between them is 74.1 (1)°. In both ligands, the thia­zole and benzimidazole rings are nearly coplanar, as indicated by the dihedral angles between their planes of 1.16 (8) and 6.29 (7)°. Each pendant benzene ring is almost perpendicular to the benzimidazole mol­ecule to which it is attached; the dihedral angles between their planes are 75.94 (9) and 75.55 (10)°. The crystal structure is stabilized by non-classical C—H⋯Cl hydrogen bonding forming a three-dimensional network.

Related literature

For background of the biochemical properties of thia­bendazole [2-(4′-thia­zol­yl)benzimidazole], see: Devereux et al. (2007[Devereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kędziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881-892.]); Kowala et al. (1971[Kowala, C., Murray, K. S., Swan, J. M. & West, B. O. (1971). Aust. J. Chem. 24, 1369-1375.]); Yan-Jua & Guang-Ganga (2009[Yan-Jua, C. U. & Guang-Ganga, L. I. (2009). Chin. J. Struct. Chem. 28, 434-438.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C17H13N3S)2]

  • Mr = 712.56

  • Triclinic, [P \overline 1]

  • a = 10.1311 (3) Å

  • b = 11.9582 (4) Å

  • c = 14.2633 (5) Å

  • α = 76.033 (3)°

  • β = 75.536 (3)°

  • γ = 69.707 (3)°

  • V = 1546.43 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 193 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker Kappa APEXII Quazar area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.840

  • 11578 measured reflections

  • 6284 independent reflections

  • 5601 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.05

  • 6284 reflections

  • 417 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯Cl2Ai 0.99 2.77 3.693 (2) 155
C14—H14⋯Cl1ii 0.95 2.69 3.584 (2) 157
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The thiabendazole or (2-(4'-thiazolyl)benzimidazole), is an antimicrobial drug belonging to the benzimidazole derivatives which are ubiquitous in biology and biomedicine (Devereux et al. 2007), Beside its biological properties, thiabendazole is an effective ligand to coordinate transition metal ions (Kowala et al., 1971; Yan-Jua and Guang-Ganga, 2009).

The crystal structure of the title compound, show that the CoII ion adopts a distorted octahedral coordination arising from two bidentate ligands and a two Cl- anion of which one (Cl2) is splited over two positions (Cl2a and Cl2b) and four nitrogen donors from the ligands. Indeed, the refined occupancy rate of Cl2a and Cl2b sites shows that the first is occupied at 95 (2) % and the remainder in the second site respectively (Fig.1). The two heterocyclic ligands (S1N1C1C2C3) and (N2N3C4 to C10); (S2N4C18C1920) and (N5N6C21 TO C27) are nearly coplanar with dihedral angles between them of 1.16 (8) ° and 6.26 (9)° respectively. The dihedral angle between the both thiabendazole molecules surrounding the cobalt atom is of 74.1 (1)°. Each benzene ring (C12 to C17 and C29 to C34) is virtually perpendicular to the benzimidazole molecule (N2N3C5 to C10 and N5N6C21 to C27) to which it is fixed and the dihedral angle between them is 75.94 (9) for the first system and 75.55 (10) for the second.

The crystal strucrure is further stabilized by an intermolecular C—H···Cl no classic hydrogen bonds (Table 2).

Related literature top

For background of the biochemical properties of thiabendazole [2-(4'-thiazolyl)benzimidazole], see: Devereux et al. (2007); Kowala et al. (1971); Yan-Jua & Guang-Ganga (2009).

Experimental top

Thiabendazole (1.22 g, 6.02 mmol) was dissolved in 20 ml of ethanol, and CoCl2.6H2O (0.48 g, 3.02 mmol) dissolved in 1 ml of water were added. After 3 days of stirring at room temperature, a single-crystal precipitated and was separated by filtration and dried at 333 K for 24 h.

Refinement top

The highest peak (2.04) and the deepest hole (-1.02) in the final Fourier map are at 0.92 Å and 0.65 Å from Cl2. The refinement of the structure in the space group P1 with a twinning model has not led to the desired result. The splitting of one chlorine position (Cl2) in the centrosymmetric group and the refinement of the occupancy rate of each position has led to a slight improvement of the refinement and there is no longer remains electronic density near the chlorine. Indeed, the refined occupancy rate of Cl2a and Cl2b sites shows that the first is occupied at 91.8 (2) % and the remainder in the second site respectively. Now, the highest peak (O.95) and the deepest hole (-0.68) in the final Fourier map are at 0.82 Å and 0.68 Å from Co1. H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene). with Uiso(H) = 1.2 Ueq (aromatic, methylene).

Structure description top

The thiabendazole or (2-(4'-thiazolyl)benzimidazole), is an antimicrobial drug belonging to the benzimidazole derivatives which are ubiquitous in biology and biomedicine (Devereux et al. 2007), Beside its biological properties, thiabendazole is an effective ligand to coordinate transition metal ions (Kowala et al., 1971; Yan-Jua and Guang-Ganga, 2009).

The crystal structure of the title compound, show that the CoII ion adopts a distorted octahedral coordination arising from two bidentate ligands and a two Cl- anion of which one (Cl2) is splited over two positions (Cl2a and Cl2b) and four nitrogen donors from the ligands. Indeed, the refined occupancy rate of Cl2a and Cl2b sites shows that the first is occupied at 95 (2) % and the remainder in the second site respectively (Fig.1). The two heterocyclic ligands (S1N1C1C2C3) and (N2N3C4 to C10); (S2N4C18C1920) and (N5N6C21 TO C27) are nearly coplanar with dihedral angles between them of 1.16 (8) ° and 6.26 (9)° respectively. The dihedral angle between the both thiabendazole molecules surrounding the cobalt atom is of 74.1 (1)°. Each benzene ring (C12 to C17 and C29 to C34) is virtually perpendicular to the benzimidazole molecule (N2N3C5 to C10 and N5N6C21 to C27) to which it is fixed and the dihedral angle between them is 75.94 (9) for the first system and 75.55 (10) for the second.

The crystal strucrure is further stabilized by an intermolecular C—H···Cl no classic hydrogen bonds (Table 2).

For background of the biochemical properties of thiabendazole [2-(4'-thiazolyl)benzimidazole], see: Devereux et al. (2007); Kowala et al. (1971); Yan-Jua & Guang-Ganga (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
Bis[1-benzyl-2-(1,3-thiazol-4-yl)-1H-benzimidazole- κ2N2,N3]dichloridocobalt(II) top
Crystal data top
[CoCl2(C17H13N3S)2]Z = 2
Mr = 712.56F(000) = 730
Triclinic, P1Dx = 1.530 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1311 (3) ÅCell parameters from 6245 reflections
b = 11.9582 (4) Åθ = 5.1–26.4°
c = 14.2633 (5) ŵ = 0.90 mm1
α = 76.033 (3)°T = 193 K
β = 75.536 (3)°Block, pink
γ = 69.707 (3)°0.40 × 0.40 × 0.20 mm
V = 1546.43 (9) Å3
Data collection top
Bruker Kappa APEXII Quazar area-detector
diffractometer
6284 independent reflections
Radiation source: microfocus sealed tube5601 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.011
φ and ω scansθmax = 26.4°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
Tmin = 0.682, Tmax = 0.840k = 1414
11578 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.3427P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6284 reflectionsΔρmax = 0.95 e Å3
417 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0040 (5)
Crystal data top
[CoCl2(C17H13N3S)2]γ = 69.707 (3)°
Mr = 712.56V = 1546.43 (9) Å3
Triclinic, P1Z = 2
a = 10.1311 (3) ÅMo Kα radiation
b = 11.9582 (4) ŵ = 0.90 mm1
c = 14.2633 (5) ÅT = 193 K
α = 76.033 (3)°0.40 × 0.40 × 0.20 mm
β = 75.536 (3)°
Data collection top
Bruker Kappa APEXII Quazar area-detector
diffractometer
6284 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5601 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.840Rint = 0.011
11578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.05Δρmax = 0.95 e Å3
6284 reflectionsΔρmin = 0.68 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6603 (2)0.37010 (19)0.43804 (14)0.0281 (4)
H10.63060.45400.44090.034*
C20.7805 (2)0.1569 (2)0.44040 (15)0.0327 (4)
H20.84190.07590.44340.039*
C30.64845 (19)0.19650 (17)0.41692 (13)0.0223 (4)
C40.56253 (19)0.13517 (16)0.39322 (13)0.0214 (4)
C50.3835 (2)0.11633 (17)0.35002 (13)0.0236 (4)
C60.2527 (2)0.13165 (19)0.32592 (14)0.0289 (4)
H60.18110.20820.32140.035*
C70.2314 (3)0.0305 (2)0.30877 (15)0.0366 (5)
H70.14350.03810.29180.044*
C80.3360 (3)0.0824 (2)0.31586 (16)0.0388 (5)
H80.31760.14930.30270.047*
C90.4642 (3)0.09957 (19)0.34126 (15)0.0346 (5)
H90.53490.17650.34670.041*
C100.4850 (2)0.00220 (17)0.35870 (13)0.0260 (4)
C110.7263 (2)0.08140 (17)0.40841 (15)0.0301 (4)
H11A0.70350.15880.42660.036*
H11B0.75460.06910.46590.036*
C120.8512 (2)0.09147 (16)0.32447 (13)0.0226 (4)
C130.9687 (2)0.19429 (17)0.33241 (15)0.0292 (4)
H130.96650.25610.38840.035*
C141.0883 (2)0.20696 (19)0.25942 (18)0.0364 (5)
H141.16850.27740.26510.044*
C151.0916 (2)0.11754 (19)0.17831 (17)0.0345 (5)
H151.17480.12590.12850.041*
C160.9753 (2)0.01644 (18)0.16905 (15)0.0299 (4)
H160.97760.04450.11240.036*
C170.8548 (2)0.00304 (17)0.24201 (14)0.0256 (4)
H170.77440.06710.23550.031*
C180.0728 (2)0.47264 (19)0.31938 (17)0.0328 (4)
H180.03350.49090.38370.039*
C190.1212 (2)0.4361 (2)0.15296 (17)0.0370 (5)
H190.12240.42490.08900.044*
C200.2387 (2)0.41930 (17)0.18986 (15)0.0258 (4)
C210.3907 (2)0.38422 (16)0.14785 (13)0.0221 (4)
C220.61612 (19)0.34029 (15)0.14499 (13)0.0211 (4)
C230.7512 (2)0.31937 (16)0.16493 (14)0.0251 (4)
H230.76390.32020.22850.030*
C240.8657 (2)0.29749 (18)0.08846 (16)0.0314 (4)
H240.95930.28210.09990.038*
C250.8473 (2)0.29740 (19)0.00575 (16)0.0349 (5)
H250.92910.28180.05650.042*
C260.7144 (2)0.31922 (18)0.02687 (15)0.0308 (4)
H260.70200.32000.09090.037*
C270.5995 (2)0.34003 (16)0.05055 (14)0.0236 (4)
C280.3882 (2)0.37895 (18)0.02866 (14)0.0287 (4)
H28A0.45480.39520.09040.034*
H28B0.30030.44920.02730.034*
C290.3500 (2)0.26816 (18)0.02967 (14)0.0268 (4)
C300.3025 (3)0.2664 (2)0.11220 (17)0.0370 (5)
H300.29870.33170.16580.044*
C310.2607 (3)0.1699 (2)0.11673 (18)0.0454 (6)
H310.22600.16990.17280.055*
C320.2692 (3)0.0738 (2)0.04062 (18)0.0462 (6)
H320.24120.00710.04420.055*
C330.3181 (3)0.0742 (2)0.04040 (19)0.0531 (7)
H330.32470.00750.09290.064*
C340.3580 (3)0.1720 (2)0.04607 (17)0.0441 (6)
H340.39120.17210.10270.053*
N10.58202 (16)0.31923 (14)0.41412 (11)0.0224 (3)
N20.43504 (16)0.19849 (13)0.37231 (11)0.0208 (3)
N30.59824 (17)0.01613 (14)0.38752 (12)0.0253 (3)
N40.20969 (16)0.43936 (14)0.28531 (12)0.0253 (3)
N50.48317 (16)0.36795 (13)0.20426 (11)0.0208 (3)
N60.45439 (17)0.36890 (14)0.05423 (11)0.0240 (3)
S10.82050 (6)0.27380 (6)0.46385 (4)0.03746 (14)
S20.02965 (6)0.48051 (6)0.23841 (5)0.04537 (16)
Cl10.42867 (5)0.58768 (4)0.30588 (4)0.03220 (12)
Cl2A0.23855 (17)0.40676 (12)0.5152 (2)0.0232 (5)0.847 (18)
Cl2B0.215 (2)0.444 (4)0.485 (2)0.060 (6)0.153 (18)
Co10.39016 (2)0.39444 (2)0.355093 (18)0.02006 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0262 (9)0.0369 (11)0.0278 (10)0.0143 (8)0.0031 (8)0.0125 (8)
C20.0277 (10)0.0361 (11)0.0330 (11)0.0096 (8)0.0084 (8)0.0009 (9)
C30.0231 (9)0.0251 (9)0.0182 (8)0.0092 (7)0.0003 (7)0.0038 (7)
C40.0232 (9)0.0223 (9)0.0179 (8)0.0088 (7)0.0017 (7)0.0049 (7)
C50.0313 (10)0.0254 (9)0.0181 (8)0.0162 (8)0.0022 (7)0.0066 (7)
C60.0363 (11)0.0312 (10)0.0258 (9)0.0186 (9)0.0055 (8)0.0046 (8)
C70.0499 (13)0.0449 (13)0.0290 (10)0.0316 (11)0.0084 (9)0.0051 (9)
C80.0610 (15)0.0334 (11)0.0332 (11)0.0302 (11)0.0008 (10)0.0107 (9)
C90.0485 (13)0.0253 (10)0.0311 (10)0.0185 (9)0.0061 (9)0.0100 (8)
C100.0327 (10)0.0243 (9)0.0213 (9)0.0140 (8)0.0049 (7)0.0070 (7)
C110.0350 (11)0.0207 (9)0.0263 (10)0.0045 (8)0.0004 (8)0.0001 (7)
C120.0255 (9)0.0199 (9)0.0240 (9)0.0066 (7)0.0052 (7)0.0066 (7)
C130.0319 (10)0.0217 (9)0.0356 (11)0.0061 (8)0.0129 (8)0.0041 (8)
C140.0229 (10)0.0282 (10)0.0582 (14)0.0025 (8)0.0070 (9)0.0161 (10)
C150.0291 (10)0.0311 (11)0.0464 (12)0.0140 (9)0.0067 (9)0.0197 (9)
C160.0362 (11)0.0258 (10)0.0290 (10)0.0139 (8)0.0027 (8)0.0092 (8)
C170.0286 (10)0.0204 (9)0.0255 (9)0.0053 (7)0.0027 (8)0.0051 (7)
C180.0215 (9)0.0289 (10)0.0474 (12)0.0078 (8)0.0027 (9)0.0087 (9)
C190.0327 (11)0.0465 (13)0.0368 (11)0.0206 (10)0.0141 (9)0.0044 (10)
C200.0253 (9)0.0224 (9)0.0333 (10)0.0118 (7)0.0085 (8)0.0014 (8)
C210.0259 (9)0.0180 (8)0.0262 (9)0.0109 (7)0.0057 (7)0.0034 (7)
C220.0242 (9)0.0151 (8)0.0238 (9)0.0072 (7)0.0014 (7)0.0040 (7)
C230.0246 (9)0.0215 (9)0.0281 (9)0.0078 (7)0.0034 (7)0.0029 (7)
C240.0247 (10)0.0253 (10)0.0404 (11)0.0075 (8)0.0003 (8)0.0047 (8)
C250.0350 (11)0.0267 (10)0.0353 (11)0.0078 (8)0.0089 (9)0.0097 (8)
C260.0409 (11)0.0238 (9)0.0269 (10)0.0107 (8)0.0016 (8)0.0093 (8)
C270.0319 (10)0.0150 (8)0.0249 (9)0.0093 (7)0.0033 (7)0.0037 (7)
C280.0415 (11)0.0254 (10)0.0246 (9)0.0142 (8)0.0125 (8)0.0015 (7)
C290.0308 (10)0.0275 (10)0.0268 (9)0.0125 (8)0.0048 (8)0.0080 (8)
C300.0461 (13)0.0391 (12)0.0344 (11)0.0170 (10)0.0156 (10)0.0072 (9)
C310.0549 (15)0.0564 (15)0.0425 (13)0.0287 (12)0.0153 (11)0.0164 (11)
C320.0615 (16)0.0519 (15)0.0437 (13)0.0398 (13)0.0016 (11)0.0201 (11)
C330.094 (2)0.0456 (14)0.0383 (13)0.0476 (15)0.0124 (13)0.0008 (11)
C340.0774 (18)0.0400 (13)0.0310 (11)0.0352 (13)0.0170 (11)0.0023 (9)
N10.0217 (7)0.0267 (8)0.0225 (7)0.0105 (6)0.0014 (6)0.0094 (6)
N20.0241 (8)0.0209 (7)0.0199 (7)0.0105 (6)0.0005 (6)0.0064 (6)
N30.0273 (8)0.0198 (8)0.0264 (8)0.0089 (6)0.0030 (6)0.0050 (6)
N40.0198 (7)0.0219 (8)0.0358 (9)0.0076 (6)0.0030 (6)0.0085 (7)
N50.0223 (7)0.0189 (7)0.0233 (7)0.0089 (6)0.0036 (6)0.0042 (6)
N60.0313 (8)0.0212 (7)0.0246 (8)0.0126 (6)0.0072 (6)0.0042 (6)
S10.0308 (3)0.0532 (3)0.0371 (3)0.0197 (2)0.0136 (2)0.0056 (2)
S20.0221 (3)0.0555 (4)0.0574 (4)0.0146 (2)0.0140 (2)0.0036 (3)
Cl10.0315 (2)0.0200 (2)0.0489 (3)0.00923 (18)0.0090 (2)0.0089 (2)
Cl2A0.0228 (4)0.0248 (8)0.0240 (7)0.0103 (4)0.0029 (3)0.0110 (4)
Cl2B0.039 (4)0.108 (13)0.050 (8)0.038 (7)0.011 (5)0.041 (10)
Co10.01664 (13)0.02009 (13)0.02660 (14)0.00703 (9)0.00087 (9)0.01077 (10)
Geometric parameters (Å, º) top
C1—N11.298 (2)C19—S21.710 (2)
C1—S11.701 (2)C19—H190.9500
C1—H10.9500C20—N41.381 (3)
C2—C31.354 (3)C20—C211.456 (3)
C2—S11.708 (2)C21—N51.318 (2)
C2—H20.9500C21—N61.356 (2)
C3—N11.382 (2)C22—N51.377 (2)
C3—C41.456 (3)C22—C231.392 (3)
C4—N21.317 (2)C22—C271.400 (3)
C4—N31.359 (2)C23—C241.378 (3)
C5—N21.389 (2)C23—H230.9500
C5—C61.392 (3)C24—C251.402 (3)
C5—C101.394 (3)C24—H240.9500
C6—C71.385 (3)C25—C261.376 (3)
C6—H60.9500C25—H250.9500
C7—C81.397 (3)C26—C271.388 (3)
C7—H70.9500C26—H260.9500
C8—C91.369 (3)C27—N61.379 (2)
C8—H80.9500C28—N61.460 (2)
C9—C101.392 (3)C28—C291.508 (3)
C9—H90.9500C28—H28A0.9900
C10—N31.383 (3)C28—H28B0.9900
C11—N31.452 (2)C29—C341.370 (3)
C11—C121.502 (3)C29—C301.386 (3)
C11—H11A0.9900C30—C311.380 (3)
C11—H11B0.9900C30—H300.9500
C12—C171.381 (3)C31—C321.372 (4)
C12—C131.388 (3)C31—H310.9500
C13—C141.376 (3)C32—C331.368 (3)
C13—H130.9500C32—H320.9500
C14—C151.375 (3)C33—C341.388 (3)
C14—H140.9500C33—H330.9500
C15—C161.371 (3)C34—H340.9500
C15—H150.9500N1—Co12.1297 (15)
C16—C171.382 (3)N2—Co12.1901 (15)
C16—H160.9500N4—Co12.1429 (16)
C17—H170.9500N5—Co12.1739 (15)
C18—N41.300 (3)Cl1—Co12.3855 (5)
C18—S21.703 (2)Cl2A—Cl2B0.57 (5)
C18—H180.9500Cl2A—Co12.4181 (19)
C19—C201.352 (3)Cl2B—Co12.261 (9)
N1—C1—S1114.29 (16)C26—C25—H25119.0
N1—C1—H1122.9C24—C25—H25119.0
S1—C1—H1122.9C25—C26—C27116.32 (19)
C3—C2—S1110.12 (16)C25—C26—H26121.8
C3—C2—H2124.9C27—C26—H26121.8
S1—C2—H2124.9N6—C27—C26131.34 (18)
C2—C3—N1114.08 (17)N6—C27—C22106.17 (16)
C2—C3—C4132.60 (18)C26—C27—C22122.42 (18)
N1—C3—C4113.32 (16)N6—C28—C29114.23 (16)
N2—C4—N3113.06 (16)N6—C28—H28A108.7
N2—C4—C3119.16 (16)C29—C28—H28A108.7
N3—C4—C3127.76 (17)N6—C28—H28B108.7
N2—C5—C6130.57 (18)C29—C28—H28B108.7
N2—C5—C10109.28 (17)H28A—C28—H28B107.6
C6—C5—C10120.10 (17)C34—C29—C30119.26 (19)
C7—C6—C5117.1 (2)C34—C29—C28123.75 (18)
C7—C6—H6121.4C30—C29—C28116.99 (18)
C5—C6—H6121.4C31—C30—C29120.2 (2)
C6—C7—C8121.7 (2)C31—C30—H30119.9
C6—C7—H7119.1C29—C30—H30119.9
C8—C7—H7119.1C32—C31—C30120.3 (2)
C9—C8—C7121.93 (19)C32—C31—H31119.9
C9—C8—H8119.0C30—C31—H31119.9
C7—C8—H8119.0C33—C32—C31119.8 (2)
C8—C9—C10116.2 (2)C33—C32—H32120.1
C8—C9—H9121.9C31—C32—H32120.1
C10—C9—H9121.9C32—C33—C34120.2 (2)
N3—C10—C9131.1 (2)C32—C33—H33119.9
N3—C10—C5105.95 (16)C34—C33—H33119.9
C9—C10—C5122.9 (2)C29—C34—C33120.3 (2)
N3—C11—C12114.20 (15)C29—C34—H34119.9
N3—C11—H11A108.7C33—C34—H34119.9
C12—C11—H11A108.7C1—N1—C3111.49 (16)
N3—C11—H11B108.7C1—N1—Co1131.34 (14)
C12—C11—H11B108.7C3—N1—Co1116.57 (12)
H11A—C11—H11B107.6C4—N2—C5105.28 (15)
C17—C12—C13119.35 (18)C4—N2—Co1113.82 (12)
C17—C12—C11123.18 (17)C5—N2—Co1139.41 (13)
C13—C12—C11117.45 (17)C4—N3—C10106.42 (16)
C14—C13—C12120.21 (19)C4—N3—C11128.90 (17)
C14—C13—H13119.9C10—N3—C11124.67 (16)
C12—C13—H13119.9C18—N4—C20111.57 (17)
C15—C14—C13119.97 (19)C18—N4—Co1131.45 (15)
C15—C14—H14120.0C20—N4—Co1116.63 (12)
C13—C14—H14120.0C21—N5—C22105.84 (15)
C16—C15—C14120.30 (19)C21—N5—Co1115.38 (12)
C16—C15—H15119.9C22—N5—Co1138.75 (12)
C14—C15—H15119.9C21—N6—C27106.33 (15)
C15—C16—C17120.08 (19)C21—N6—C28128.80 (17)
C15—C16—H16120.0C27—N6—C28124.88 (16)
C17—C16—H16120.0C1—S1—C289.98 (10)
C12—C17—C16120.09 (18)C18—S2—C1990.14 (10)
C12—C17—H17120.0Cl2B—Cl2A—Co167.3 (11)
C16—C17—H17120.0Cl2A—Cl2B—Co199 (2)
N4—C18—S2114.02 (17)N1—Co1—N4169.37 (6)
N4—C18—H18123.0N1—Co1—N598.02 (6)
S2—C18—H18123.0N4—Co1—N575.45 (6)
C20—C19—S2109.95 (17)N1—Co1—N275.58 (6)
C20—C19—H19125.0N4—Co1—N294.82 (6)
S2—C19—H19125.0N5—Co1—N279.86 (5)
C19—C20—N4114.31 (18)N1—Co1—Cl2B104.7 (9)
C19—C20—C21132.2 (2)N4—Co1—Cl2B81.7 (8)
N4—C20—C21113.53 (16)N5—Co1—Cl2B157.1 (8)
N5—C21—N6112.85 (16)N2—Co1—Cl2B102.9 (11)
N5—C21—C20118.58 (17)N1—Co1—Cl191.26 (4)
N6—C21—C20128.53 (17)N4—Co1—Cl196.61 (4)
N5—C22—C23130.57 (17)N5—Co1—Cl186.27 (4)
N5—C22—C27108.81 (16)N2—Co1—Cl1159.21 (4)
C23—C22—C27120.57 (17)Cl2B—Co1—Cl195.9 (9)
C24—C23—C22117.13 (18)N1—Co1—Cl2A93.31 (8)
C24—C23—H23121.4N4—Co1—Cl2A91.82 (8)
C22—C23—H23121.4N5—Co1—Cl2A164.99 (7)
C23—C24—C25121.7 (2)N2—Co1—Cl2A93.56 (5)
C23—C24—H24119.2Cl2B—Co1—Cl2A13.4 (12)
C25—C24—H24119.2Cl1—Co1—Cl2A103.35 (3)
C26—C25—C24121.90 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cl2Ai0.992.773.693 (2)155
C14—H14···Cl1ii0.952.693.584 (2)157
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[CoCl2(C17H13N3S)2]
Mr712.56
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)10.1311 (3), 11.9582 (4), 14.2633 (5)
α, β, γ (°)76.033 (3), 75.536 (3), 69.707 (3)
V3)1546.43 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker Kappa APEXII Quazar area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.682, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
11578, 6284, 5601
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.05
No. of reflections6284
No. of parameters417
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cl2Ai0.992.773.693 (2)155.3
C14—H14···Cl1ii0.952.693.584 (2)156.5
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z.
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevereux, M. O., Shea, D., Kellett, A., McCann, M., Walsh, M., Egan, D., Deegan, C., Kędziora, K., Rosair, G. & Müller-Bunz, H. (2007). J. Inorg. Biochem. 101, 881–892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKowala, C., Murray, K. S., Swan, J. M. & West, B. O. (1971). Aust. J. Chem. 24, 1369–1375.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan-Jua, C. U. & Guang-Ganga, L. I. (2009). Chin. J. Struct. Chem. 28, 434–438.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds