[Journal logo]

Volume 69 
Part 1 
Pages o52-o53  
January 2013  

Received 22 November 2012
Accepted 3 December 2012
Online 8 December 2012

Key indicators
Single-crystal X-ray study
T = 110 K
Mean [sigma](C-C) = 0.002 Å
R = 0.027
wR = 0.074
Data-to-parameter ratio = 15.1
Details
Open access

N-[3a-(4-Bromophenyl)-8b-hydroxy-6,8-dimethoxy-3-phenyl-2,3,3a,8b-tetrahydro-1H-cyclopenta[b]benzofuran-1-yl]formamide monohydrate

aCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS-UHP 7036, Institut Jean Barriol, Université de Lorraine, BP 70239, Bd des Aiguillettes, 54506 Vandoeuvre-les-Nancy, France, and bTherapeutic Innovation Laboratory (UMR7200), Department of Medicinal Chemistry, Faculté de Pharmacie, CNRS Université de Strasbourg, 74 Route du Rhin, BP 60024, 67401 Illkirch, France
Correspondence e-mail: emmanuel.aubert@crm2.uhp-nancy.fr

In the title compound, C26H24BrNO5·H2O, a synthetic analogue of natural flavagline, the cyclopentane ring adopts an envelope conformation (the flap atom bearing the phenyl group) and the vicinal phenyl and bromophenyl groups are slightly shifted relative to each other [CPh-C-C-CPhBr = 36.3 (2)°]. Intramolecular N-H...O and C-H...O hydrogen bonds form S(5) motifs. In the crystal, the organic and the water molecules are linked by an O-H...O hydrogen bond. Pairs of organic and water molecules, located about inversion centers, interact through O-H...O hydrogen bonds, forming R44(20) and R44(26) motifs, which together lead to C22(9) motifs. The crystal packing is also characterized by N-H...O and C-H...O hydrogen bonds between neighbouring organic molecules, forming R22(10) and R22(18) motifs, respectively.

Related literature

For flavaglines and their anticancer, neuro- and cardioprotective activities, see: Ribeiro et al. (2012a[Ribeiro, N., Thuaud, F., Bernard, Y., Gaiddon, C., Cresteil, T., Hild, A., Hirsch, E., Michel, P. P., Nebigil, C. G. & Désaubry, L. (2012a). J. Med. Chem. 55. In the press. doi:10.1021/jm301201z.],b[Ribeiro, N., Thuaud, F., Nebigil, C. G. & Désaubry, L. (2012b). Bioorg. Med. Chem. 20, 1857-1864.]); Bernard et al. (2011[Bernard, Y., Ribeiro, N., Thuaud, F., Türkeri, G., Dirr, R., Boulberdaa, M., Nebigil, C. G. & Désaubry, L. (2011). PLoS ONE, 6, e25302.]); Thuaud et al. (2011[Thuaud, F., Ribeiro, N., Gaiddon, C., Cresteil, T. & Désaubry, L. (2011). J. Med. Chem. 54, 411-415.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24BrNO5·H2O

  • Mr = 528.39

  • Triclinic, [P \overline 1]

  • a = 8.5941 (2) Å

  • b = 12.1107 (4) Å

  • c = 12.6642 (3) Å

  • [alpha] = 70.537 (2)°

  • [beta] = 73.495 (2)°

  • [gamma] = 73.898 (2)°

  • V = 1166.98 (5) Å3

  • Z = 2

  • Cu K[alpha] radiation

  • [mu] = 2.77 mm-1

  • T = 110 K

  • 0.34 × 0.26 × 0.07 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), based on expressions derived from Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.551, Tmax = 0.868

  • 24473 measured reflections

  • 4860 independent reflections

  • 4814 reflections with I > 2[sigma](I)

  • Rint = 0.021

Refinement
  • R[F2 > 2[sigma](F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.05

  • 4860 reflections

  • 322 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.38 e Å-3

  • [Delta][rho]min = -0.59 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N18-H18...O17 0.83 2.31 2.652 (2) 106
C32-H32...O1 0.95 2.28 2.661 (2) 103
O17-H17...O33 0.84 1.90 2.686 (2) 156
N18-H18...O17i 0.83 2.38 3.185 (2) 163
C28-H28...O33i 0.95 2.53 3.328 (2) 142
C29-H29...O15i 0.95 2.62 3.516 (2) 157
O33-H33A...O13ii 0.81 2.21 3.015 (2) 179
O33-H33B...O20iii 0.81 1.90 2.699 (2) 170
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.].


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2432 ).


Acknowledgements

The Service Commun de Diffraction X of the Université de Lorraine is thanked for providing access to crystallographic facilities. Generous financial support for this work was provided to LD by the Association pour la Recherche sur le Cancer (ARC, grant Nos. 3940 and SFI20111204054) and the Fondation pour la Recherche Médicale. We also thank the ARC (NR) and MNESR (FT) for fellowships.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  [CrossRef] [details]
Bernard, Y., Ribeiro, N., Thuaud, F., Türkeri, G., Dirr, R., Boulberdaa, M., Nebigil, C. G. & Désaubry, L. (2011). PLoS ONE, 6, e25302.  [PubMed]
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.  [CrossRef] [details]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [ISI] [CrossRef] [ChemPort] [details]
Ribeiro, N., Thuaud, F., Bernard, Y., Gaiddon, C., Cresteil, T., Hild, A., Hirsch, E., Michel, P. P., Nebigil, C. G. & Désaubry, L. (2012a). J. Med. Chem. 55. In the press. doi:10.1021/jm301201z.
Ribeiro, N., Thuaud, F., Nebigil, C. G. & Désaubry, L. (2012b). Bioorg. Med. Chem. 20, 1857-1864.  [CrossRef] [ChemPort] [PubMed]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Thuaud, F., Ribeiro, N., Gaiddon, C., Cresteil, T. & Désaubry, L. (2011). J. Med. Chem. 54, 411-415.  [ISI] [CrossRef] [ChemPort] [PubMed]


Acta Cryst (2013). E69, o52-o53   [ doi:10.1107/S1600536812049641 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.