organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl 2-chloro­benzoate

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut fur Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: humaira_siddiqi@yahoo.com

(Received 3 December 2012; accepted 11 December 2012; online 15 December 2012)

The aromatic rings in the title compound, C13H8ClNO4, enclose a dihedral angle of 39.53 (3)°. The nitro group is almost coplanar with the ring to which it is attached [dihedral angle = 4.31 (1)°]. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds into chains running along [001].

Related literature

For the use of 4-nitro­phenyl-2-chloro­benzoate as a starting material for the synthesis of pain-relieving and anti-inflammatory drugs, see: Selvakumar et al. (2002[Selvakumar, N., Malar Azhagan, A., Seinivas, D. & Gopi Krishna, G. (2002). Tetrahedron Lett. 43, 9175-9178.]); Jefford & Zaslona (1985[Jefford, C. W. & Zaslona, A. (1985). Tetrahedron Lett. 26, 6035-6038.]). For a similar hydrogen-bonding pattern in a related structure, see: Akhter et al. (2012[Akhter, T., Masood Siddiqi, H., Akhter, Z. & McKee, V. (2012). Acta Cryst. E68, o1912.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8ClNO4

  • Mr = 277.65

  • Orthorhombic, P b c a

  • a = 11.4790 (4) Å

  • b = 14.0461 (5) Å

  • c = 14.3702 (7) Å

  • V = 2316.98 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 173 K

  • 0.36 × 0.15 × 0.15 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.888, Tmax = 0.951

  • 54293 measured reflections

  • 3251 independent reflections

  • 3071 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.105

  • S = 1.14

  • 3251 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.48 3.3368 (19) 150
Symmetry code: (i) x, y, z-1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The aromatic esters, like 4-Nitrophenyl-2-chlorobenzoate, can be used as starting materials for the synthesis of several pain-relieving and anti-inflammatory drugs (Selvakumar et al., 2002; Jefford & Zaslona, 1985).

The two aromatic rings in the title compound enclose a dihedral angle of 39.53 (3)°. The nitro group is almost coplanar with the phenyl ring to which it is attached [dihedral angle 4.31 (1)°]. In the crystal, the molecules are connected by C—H···O bonds to chains running along [0 0 1].

Related literature top

For the use of 4-nitrophenyl-2-chlorobenzoate as a starting material for the synthesis of pain-relieving and anti-inflammatory drugs, see: Selvakumar et al. (2002); Jefford & Zaslona (1985). For a similar hydrogen-bonding pattern in a related structure, see: Akhter et al. (2012).

Experimental top

2-Chlorobenzoyl chloride was added drop wise to the solution of 4-nitrophenol (in a mixture of dry tetrahydrofuran (THF) and triethyl amine). The reaction mixture was stirred at room temperature for two hours and then was poured into the cold water. The oily product settled down after allowing the solution to stand for two hours, the supernatant liquid was decanted. The product was extracted from the solution by extraction with ethyl acetate, washed with 10% NaHCO3 solution to remove any traces of reactants and recrystallized from methanol. Yield 78%, m.p. 416–418 K.

Refinement top

All H atoms were initially located by difference Fourier synthesis. Subsequently all H atoms were refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

The aromatic esters, like 4-Nitrophenyl-2-chlorobenzoate, can be used as starting materials for the synthesis of several pain-relieving and anti-inflammatory drugs (Selvakumar et al., 2002; Jefford & Zaslona, 1985).

The two aromatic rings in the title compound enclose a dihedral angle of 39.53 (3)°. The nitro group is almost coplanar with the phenyl ring to which it is attached [dihedral angle 4.31 (1)°]. In the crystal, the molecules are connected by C—H···O bonds to chains running along [0 0 1].

For the use of 4-nitrophenyl-2-chlorobenzoate as a starting material for the synthesis of pain-relieving and anti-inflammatory drugs, see: Selvakumar et al. (2002); Jefford & Zaslona (1985). For a similar hydrogen-bonding pattern in a related structure, see: Akhter et al. (2012).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
4-Nitrophenyl 2-chlorobenzoate top
Crystal data top
C13H8ClNO4F(000) = 1136
Mr = 277.65Dx = 1.592 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 57790 reflections
a = 11.4790 (4) Åθ = 3.2–30.1°
b = 14.0461 (5) ŵ = 0.34 mm1
c = 14.3702 (7) ÅT = 173 K
V = 2316.98 (16) Å3Rod, colourless
Z = 80.36 × 0.15 × 0.15 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3251 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source3071 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.057
ω scansθmax = 29.7°, θmin = 3.2°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1515
Tmin = 0.888, Tmax = 0.951k = 1918
54293 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0411P)2 + 1.2306P]
where P = (Fo2 + 2Fc2)/3
3251 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C13H8ClNO4V = 2316.98 (16) Å3
Mr = 277.65Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4790 (4) ŵ = 0.34 mm1
b = 14.0461 (5) ÅT = 173 K
c = 14.3702 (7) Å0.36 × 0.15 × 0.15 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
3251 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
3071 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.951Rint = 0.057
54293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.14Δρmax = 0.32 e Å3
3251 reflectionsΔρmin = 0.41 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66372 (3)0.20873 (4)0.41090 (3)0.04536 (14)
N10.85406 (11)0.06742 (9)1.00169 (8)0.0282 (2)
O10.93046 (12)0.09364 (13)1.05429 (8)0.0557 (4)
O20.76471 (11)0.02876 (9)1.02808 (8)0.0417 (3)
O30.92469 (8)0.11781 (8)0.62155 (6)0.0280 (2)
O40.76541 (11)0.20800 (9)0.59665 (7)0.0403 (3)
C10.88309 (12)0.15657 (9)0.46702 (8)0.0236 (2)
C20.80645 (13)0.17488 (10)0.39336 (9)0.0272 (3)
C30.84243 (15)0.16241 (11)0.30152 (10)0.0352 (3)
H30.78940.17380.25200.042*
C40.95451 (17)0.13369 (11)0.28236 (10)0.0372 (4)
H40.97860.12510.21970.045*
C51.03234 (16)0.11733 (11)0.35436 (10)0.0357 (3)
H51.11020.09890.34110.043*
C60.99620 (14)0.12797 (10)0.44555 (9)0.0297 (3)
H61.04960.11550.49460.036*
C70.84707 (12)0.16577 (10)0.56623 (9)0.0246 (3)
C110.90125 (11)0.10896 (9)0.71610 (8)0.0219 (2)
C120.79705 (12)0.07089 (9)0.74716 (9)0.0242 (3)
H120.73750.05410.70430.029*
C130.78119 (11)0.05777 (9)0.84200 (9)0.0232 (2)
H130.71020.03250.86550.028*
C140.87097 (11)0.08221 (9)0.90168 (8)0.0214 (2)
C150.97586 (11)0.11932 (10)0.87098 (9)0.0233 (2)
H151.03600.13500.91370.028*
C160.99071 (11)0.13298 (9)0.77635 (9)0.0235 (2)
H161.06150.15860.75300.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02762 (19)0.0729 (3)0.0356 (2)0.00627 (18)0.00863 (14)0.01702 (19)
N10.0323 (6)0.0349 (6)0.0174 (5)0.0006 (5)0.0003 (4)0.0019 (4)
O10.0494 (7)0.0997 (12)0.0180 (5)0.0213 (8)0.0083 (5)0.0016 (6)
O20.0450 (7)0.0552 (7)0.0251 (5)0.0142 (6)0.0084 (5)0.0051 (5)
O30.0270 (5)0.0425 (6)0.0144 (4)0.0076 (4)0.0011 (3)0.0034 (4)
O40.0442 (7)0.0520 (7)0.0246 (5)0.0231 (5)0.0002 (4)0.0003 (5)
C10.0312 (6)0.0239 (6)0.0155 (5)0.0014 (5)0.0013 (5)0.0006 (4)
C20.0313 (7)0.0293 (6)0.0209 (6)0.0097 (5)0.0052 (5)0.0051 (5)
C30.0509 (9)0.0372 (8)0.0174 (6)0.0186 (7)0.0075 (6)0.0062 (5)
C40.0610 (10)0.0341 (8)0.0166 (6)0.0105 (7)0.0064 (6)0.0017 (5)
C50.0484 (9)0.0335 (7)0.0251 (7)0.0047 (7)0.0102 (6)0.0009 (5)
C60.0362 (7)0.0332 (7)0.0196 (6)0.0064 (6)0.0015 (5)0.0004 (5)
C70.0293 (6)0.0278 (6)0.0167 (5)0.0027 (5)0.0027 (5)0.0002 (5)
C110.0243 (6)0.0269 (6)0.0146 (5)0.0042 (5)0.0005 (4)0.0009 (4)
C120.0235 (6)0.0304 (6)0.0187 (5)0.0008 (5)0.0031 (4)0.0040 (5)
C130.0230 (6)0.0263 (6)0.0204 (5)0.0025 (5)0.0011 (4)0.0008 (5)
C140.0249 (6)0.0238 (6)0.0155 (5)0.0013 (5)0.0002 (4)0.0005 (4)
C150.0214 (5)0.0297 (6)0.0189 (5)0.0001 (5)0.0034 (4)0.0004 (5)
C160.0201 (5)0.0298 (6)0.0204 (5)0.0009 (5)0.0006 (4)0.0031 (5)
Geometric parameters (Å, º) top
Cl1—C21.7245 (16)C4—H40.9500
N1—O11.2149 (17)C5—C61.3827 (19)
N1—O21.2210 (16)C5—H50.9500
N1—C141.4650 (16)C6—H60.9500
O3—C71.3710 (16)C11—C121.3842 (18)
O3—C111.3906 (14)C11—C161.3849 (18)
O4—C71.1923 (17)C12—C131.3873 (18)
C1—C61.394 (2)C12—H120.9500
C1—C21.4001 (18)C13—C141.3839 (18)
C1—C71.4901 (17)C13—H130.9500
C2—C31.394 (2)C14—C151.3842 (18)
C3—C41.376 (3)C15—C161.3839 (17)
C3—H30.9500C15—H150.9500
C4—C51.386 (2)C16—H160.9500
O1—N1—O2123.23 (12)O4—C7—O3122.88 (12)
O1—N1—C14118.15 (12)O4—C7—C1127.74 (12)
O2—N1—C14118.63 (12)O3—C7—C1109.38 (11)
C7—O3—C11118.99 (10)C12—C11—C16122.23 (11)
C6—C1—C2118.10 (12)C12—C11—O3121.12 (11)
C6—C1—C7119.68 (12)C16—C11—O3116.45 (11)
C2—C1—C7122.21 (13)C11—C12—C13118.78 (12)
C3—C2—C1120.43 (14)C11—C12—H12120.6
C3—C2—Cl1117.03 (11)C13—C12—H12120.6
C1—C2—Cl1122.49 (11)C14—C13—C12118.56 (12)
C4—C3—C2120.22 (14)C14—C13—H13120.7
C4—C3—H3119.9C12—C13—H13120.7
C2—C3—H3119.9C13—C14—C15122.93 (11)
C3—C4—C5120.12 (13)C13—C14—N1118.30 (12)
C3—C4—H4119.9C15—C14—N1118.77 (11)
C5—C4—H4119.9C16—C15—C14118.20 (11)
C6—C5—C4119.75 (15)C16—C15—H15120.9
C6—C5—H5120.1C14—C15—H15120.9
C4—C5—H5120.1C15—C16—C11119.28 (12)
C5—C6—C1121.36 (14)C15—C16—H16120.4
C5—C6—H6119.3C11—C16—H16120.4
C1—C6—H6119.3
C6—C1—C2—C31.5 (2)C7—O3—C11—C1254.46 (18)
C7—C1—C2—C3177.88 (13)C7—O3—C11—C16130.52 (13)
C6—C1—C2—Cl1178.88 (11)C16—C11—C12—C131.0 (2)
C7—C1—C2—Cl10.49 (19)O3—C11—C12—C13175.74 (12)
C1—C2—C3—C41.2 (2)C11—C12—C13—C140.81 (19)
Cl1—C2—C3—C4178.77 (12)C12—C13—C14—C150.1 (2)
C2—C3—C4—C50.2 (2)C12—C13—C14—N1179.49 (12)
C3—C4—C5—C61.4 (2)O1—N1—C14—C13176.12 (15)
C4—C5—C6—C11.1 (2)O2—N1—C14—C134.49 (19)
C2—C1—C6—C50.3 (2)O1—N1—C14—C154.3 (2)
C7—C1—C6—C5179.08 (14)O2—N1—C14—C15175.11 (13)
C11—O3—C7—O47.1 (2)C13—C14—C15—C160.4 (2)
C11—O3—C7—C1173.56 (11)N1—C14—C15—C16179.97 (12)
C6—C1—C7—O4162.13 (16)C14—C15—C16—C110.3 (2)
C2—C1—C7—O418.5 (2)C12—C11—C16—C150.5 (2)
C6—C1—C7—O317.14 (18)O3—C11—C16—C15175.43 (12)
C2—C1—C7—O3162.22 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.483.3368 (19)150
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC13H8ClNO4
Mr277.65
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)11.4790 (4), 14.0461 (5), 14.3702 (7)
V3)2316.98 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.36 × 0.15 × 0.15
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(X-AREA; Stoe & Cie, 2001)
Tmin, Tmax0.888, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
54293, 3251, 3071
Rint0.057
(sin θ/λ)max1)0.697
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 1.14
No. of reflections3251
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.41

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.483.3368 (19)150.1
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, for providing necessary research facilities.

References

First citationAkhter, T., Masood Siddiqi, H., Akhter, Z. & McKee, V. (2012). Acta Cryst. E68, o1912.  CSD CrossRef IUCr Journals Google Scholar
First citationJefford, C. W. & Zaslona, A. (1985). Tetrahedron Lett. 26, 6035–6038.  CrossRef CAS Web of Science Google Scholar
First citationSelvakumar, N., Malar Azhagan, A., Seinivas, D. & Gopi Krishna, G. (2002). Tetrahedron Lett. 43, 9175–9178.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds