[Journal logo]

Volume 69 
Part 1 
Page m4  
January 2013  

Received 16 November 2012
Accepted 28 November 2012
Online 5 December 2012

Key indicators
Single-crystal X-ray study
T = 150 K
Mean [sigma](C-C) = 0.005 Å
Disorder in main residue
R = 0.020
wR = 0.046
Data-to-parameter ratio = 20.9
Details
Open access

Hexa-[mu]2-acetato-hexa-n-butylhexa-[mu]3-oxido-tin(IV) toluene monosolvate

aInstitut für Chemie neuer Materialien, Anorganische Chemie II, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
Correspondence e-mail: hreuter@uni-osnabrueck.de

The title compound, [Sn6(C4H9)6(CH3COO)6O6]·C7H8, has one half-toluene molecule and one half-organotin molecule in the asymmetric unit. The latter is situated about an inversion centre and belongs to the class of hexameric monoorganooxotin carboxylates with a hexagonal prismatic or `drum-like' motif of the central tin-oxygen core. Two Sn3O3 rings in a flat-chair conformation are linked via six Sn-O bonds and six bridging acetate groups. All Sn atoms have approximate octahedral coordination geometry. The Sn-O bonds which are trans to the alkyl group are significantly shorter than the others. One butyl group is disordered over two different sites, with occupancies of 0.9:0.1. Very large atomic displacement parameters of the toluene molecule indicate an unresolvable disorder about the twofold axis.

Related literature

For an overview of the synthesis of organotin carboxylates, see: Mehrotra & Bohra (1983[Mehrotra, R. C. & Bohra, R. (1983). In Metal Carboxylates. London, New York: Academic Press.]). For an overview on compositions and structure types of organotin carboxylates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.]). For structural details on hexameric, `drum-like' monoorganooxotin acetates, see: Day et al. (1988[Day, R. O., Chandrasekhar, V., Kumara Swamy, K. C., Burton, S. D. & Holmes, R. R. (1988). Inorg. Chem. 27, 2887-2893.]); Kuan et al. (2002[Kuan, F. S., Dakternieks, D. & Tiekink, E. R. T. (2002). Acta Cryst. E58, m301-m303.]); Beckmann et al. (2004[Beckmann, J., Dakternieks, D., Duthie, A., Thompson, L. & Tiekink, E. R. T. (2004). Acta Cryst. E60, m767-m768.]). For `ladder-type' monoorganooxotin carboxylates, see: Day et al. (1988[Day, R. O., Chandrasekhar, V., Kumara Swamy, K. C., Burton, S. D. & Holmes, R. R. (1988). Inorg. Chem. 27, 2887-2893.]). For the static trans strengthening in alkyltin(IV) halides, see: Buslaev et al. (1989[Buslaev, Y. A., Kravchenko, E. A., Burtzev, M. Y. & Aslanov, L. A. (1989). Coord. Chem. Rev. 93, 185-204.]); Reuter & Puff (1992[Reuter, H. & Puff, H. (1992). J. Organomet. Chem. 424, 23-31.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn6(C4H9)6(C2H3O2)6O6]·C7H8

  • Mr = 1597.21

  • Monoclinic, C 2/c

  • a = 23.4154 (8) Å

  • b = 15.5832 (6) Å

  • c = 16.1012 (6) Å

  • [beta] = 93.926 (2)°

  • V = 5861.3 (4) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 2.58 mm-1

  • T = 150 K

  • 0.30 × 0.22 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2 (including SAINT) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.509, Tmax = 0.783

  • 76854 measured reflections

  • 6788 independent reflections

  • 5890 reflections with I > 2[sigma](I)

  • Rint = 0.035

Refinement
  • R[F2 > 2[sigma](F2)] = 0.020

  • wR(F2) = 0.046

  • S = 1.05

  • 6788 reflections

  • 325 parameters

  • 6 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.65 e Å-3

  • [Delta][rho]min = -0.61 e Å-3

Table 1
Selected torsion angles (°)

Sn2-O2-Sn3-O1i -25.88 (11)
O2-Sn3-O1i-Sn1i 24.87 (11)
Sn3-O1i-Sn1i-O3i -24.64 (11)
O1i-Sn1i-O3i-Sn2 24.53 (11)
Sn1i-O3i-Sn2-O2 -24.89 (11)
O3i-Sn2-O2-Sn3 25.96 (11)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 (including SAINT) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 (including SAINT) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2609 ).


References

Beckmann, J., Dakternieks, D., Duthie, A., Thompson, L. & Tiekink, E. R. T. (2004). Acta Cryst. E60, m767-m768.  [CSD] [CrossRef] [details]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2 (including SAINT) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Buslaev, Y. A., Kravchenko, E. A., Burtzev, M. Y. & Aslanov, L. A. (1989). Coord. Chem. Rev. 93, 185-204.  [CrossRef] [ChemPort] [ISI]
Day, R. O., Chandrasekhar, V., Kumara Swamy, K. C., Burton, S. D. & Holmes, R. R. (1988). Inorg. Chem. 27, 2887-2893.  [CrossRef] [ChemPort] [ISI]
Kuan, F. S., Dakternieks, D. & Tiekink, E. R. T. (2002). Acta Cryst. E58, m301-m303.  [CSD] [CrossRef] [details]
Mehrotra, R. C. & Bohra, R. (1983). In Metal Carboxylates. London, New York: Academic Press.
Reuter, H. & Puff, H. (1992). J. Organomet. Chem. 424, 23-31.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.  [CrossRef] [ChemPort] [ISI]


Acta Cryst (2013). E69, m4  [ doi:10.1107/S160053681204888X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.