organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-2,4,5-tri­fluoro­benzoic acid

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, and bChemical Engineering Department, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

(Received 25 November 2012; accepted 2 December 2012; online 8 December 2012)

The title compound, C7H2ClF3O2, was prepared by the chlorination of 3-amino-2,4,5-trifluoro­benzoic acid. The carboxyl group is twisted relative to the benzene ring by 6.8 (1)°. In the crystal, pairs of O—H⋯O hydrogen bonds link mol­ecules into typical centrosymmetric carb­oxy­lic acid dimers. These dimers are arranged into sheets parallel to (-103).

Related literature

For applications of the title compound in synthesis, see: Sun et al. (2011[Sun, H., Jiang, L., Li, Y.-L., Lu, X. & Xu, H. (2011). Acta Cryst. E67, o2974.]). For a related structure, see: Zhu (2009[Zhu, X. (2009). Acta Cryst. E65, o1886.]).

[Scheme 1]

Experimental

Crystal data
  • C7H2ClF3O2

  • Mr = 210.54

  • Monoclinic, P 21 /n

  • a = 4.4760 (9) Å

  • b = 13.654 (3) Å

  • c = 12.400 (3) Å

  • β = 97.16 (3)°

  • V = 751.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.859, Tmax = 0.950

  • 1578 measured reflections

  • 1394 independent reflections

  • 699 reflections with I > 2σ(I)

  • Rint = 0.092

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.132

  • S = 1.00

  • 1394 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.84 2.658 (4) 178
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ethyl 8-chloro-1-cyclopropyl-6,7-difluoro-4-oxo-1,4-dihydroquinoline- 3-carboxylate is a key intermediate in the preparation of 7-aminosubstituted 8-chloro-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-3-quinolinecarboxylic acids which are useful as antibacterial agents and its crystal structure was recently reported (Sun et al., 2011). In turn 3-chloro-2,4,5-trifluorobenzoic acid, that is not commercially available, is an important material for its preparation. This compound is not easisly synthesized and herein we report its synthesis and the crystal structure.

In the title molecule (Fig. 1) the carboxyl group forms a dihedral angle of 6.8 (1)° with the benzene ring. Intermolecular O—H···O hydrogen bond (Table 1) links the molecules into typical carboxylic acid dimers.

Related literature top

For applications of the title compound in synthesis, see: Sun et al. (2011). For a related structure, see: Zhu (2009).

Experimental top

A solid mixture of 0.52 g of 3-amino-2,4,5-trifluorobenzoic acid and 0.33 g of sodium nitrite was added in portions to a solution of 3 g of cupric chloride in 9 ml of water and 0.5 g of a 36% aqueous solution of hydrochloric acid. The resulting mixture was stirred for 1.5 h and then additional water (25 ml) and diethyl ether (20 ml) were added. The layers are separated and the aqueous layer extracted with diethyl ether. The combined organic extracts are extracted with 36% aqueous solution of hydrochloric acid and then concentrated on the rotary evaporator to give 0.45 g of 3-chloro-2,4,5-trifuorobenzoic acid as a light-brown solid. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a toluene solution.

Refinement top

H atoms were positioned geometrically with O—H = 0.82 Å and C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) =xUeq(C,O), where x = 1.5 for OH and x = 1.2 for CH H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
3-Chloro-2,4,5-trifluorobenzoic acid top
Crystal data top
C7H2ClF3O2F(000) = 416
Mr = 210.54Dx = 1.860 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 4.4760 (9) Åθ = 10–13°
b = 13.654 (3) ŵ = 0.52 mm1
c = 12.400 (3) ÅT = 293 K
β = 97.16 (3)°Block, colourless
V = 751.9 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
699 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.859, Tmax = 0.950l = 1414
1578 measured reflections3 standard reflections every 200 reflections
1394 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
1394 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C7H2ClF3O2V = 751.9 (3) Å3
Mr = 210.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4760 (9) ŵ = 0.52 mm1
b = 13.654 (3) ÅT = 293 K
c = 12.400 (3) Å0.30 × 0.20 × 0.10 mm
β = 97.16 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
699 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.092
Tmin = 0.859, Tmax = 0.9503 standard reflections every 200 reflections
1578 measured reflections intensity decay: 1%
1394 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
1394 reflectionsΔρmin = 0.17 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.2118 (3)0.00527 (9)0.37810 (10)0.1012 (5)
F10.4799 (5)0.18021 (17)0.48010 (19)0.0847 (7)
C10.2598 (8)0.2017 (3)0.4004 (3)0.0618 (10)
O10.2232 (6)0.4641 (2)0.4113 (2)0.0892 (9)
O20.5635 (6)0.3685 (2)0.5008 (2)0.0849 (9)
H2A0.62530.42090.52720.127*
F20.2511 (6)0.0700 (2)0.2054 (2)0.1026 (9)
C20.1144 (10)0.1237 (3)0.3435 (3)0.0711 (11)
C30.1036 (10)0.1438 (4)0.2615 (3)0.0768 (12)
F30.4110 (5)0.2527 (2)0.15189 (18)0.0911 (8)
C40.1863 (9)0.2388 (3)0.2335 (3)0.0687 (11)
C50.0428 (8)0.3137 (3)0.2896 (3)0.0645 (10)
H5A0.09720.37780.27070.077*
C60.1844 (8)0.2971 (3)0.3749 (3)0.0555 (9)
C70.3271 (8)0.3836 (3)0.4317 (3)0.0583 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1469 (12)0.0629 (7)0.0972 (9)0.0035 (7)0.0284 (7)0.0006 (7)
F10.1002 (18)0.0701 (15)0.0811 (14)0.0138 (13)0.0013 (13)0.0033 (13)
C10.068 (3)0.067 (3)0.051 (2)0.006 (2)0.0116 (19)0.0000 (19)
O10.103 (2)0.0606 (19)0.095 (2)0.0080 (16)0.0235 (17)0.0072 (16)
O20.096 (2)0.0667 (18)0.086 (2)0.0034 (15)0.0111 (17)0.0161 (16)
F20.122 (2)0.091 (2)0.0952 (18)0.0351 (16)0.0130 (15)0.0215 (16)
C20.092 (3)0.061 (3)0.066 (3)0.005 (2)0.032 (2)0.004 (2)
C30.080 (3)0.086 (3)0.067 (3)0.026 (3)0.020 (2)0.016 (3)
F30.0777 (15)0.119 (2)0.0715 (14)0.0059 (14)0.0103 (13)0.0029 (15)
C40.070 (3)0.079 (3)0.059 (2)0.011 (2)0.014 (2)0.007 (2)
C50.068 (3)0.070 (3)0.057 (2)0.009 (2)0.0156 (19)0.004 (2)
C60.056 (2)0.060 (2)0.053 (2)0.0027 (19)0.0150 (17)0.0031 (18)
C70.069 (2)0.055 (2)0.050 (2)0.004 (2)0.0060 (18)0.0007 (17)
Geometric parameters (Å, º) top
Cl—C21.716 (4)C2—C31.346 (6)
F1—C11.338 (4)C3—C41.381 (6)
C1—C61.373 (5)F3—C41.348 (4)
C1—C21.393 (5)C4—C51.354 (5)
O1—C71.208 (4)C5—C61.391 (5)
O2—C71.293 (4)C5—H5A0.9300
O2—H2A0.8200C6—C71.479 (5)
F2—C31.349 (4)
F1—C1—C6121.0 (3)F3—C4—C3118.2 (4)
F1—C1—C2117.5 (4)C5—C4—C3119.1 (4)
C6—C1—C2121.5 (3)C4—C5—C6121.4 (4)
C7—O2—H2A109.5C4—C5—H5A119.3
C3—C2—C1118.4 (4)C6—C5—H5A119.3
C3—C2—Cl121.2 (4)C1—C6—C5117.8 (3)
C1—C2—Cl120.4 (3)C1—C6—C7124.7 (3)
C2—C3—F2120.0 (4)C5—C6—C7117.5 (3)
C2—C3—C4121.8 (4)O1—C7—O2123.0 (4)
F2—C3—C4118.2 (4)O1—C7—C6119.7 (3)
F3—C4—C5122.7 (4)O2—C7—C6117.2 (4)
F1—C1—C2—C3178.7 (3)F3—C4—C5—C6178.7 (3)
C6—C1—C2—C30.3 (6)C3—C4—C5—C60.3 (5)
F1—C1—C2—Cl1.5 (5)F1—C1—C6—C5178.8 (3)
C6—C1—C2—Cl179.5 (3)C2—C1—C6—C50.2 (5)
C1—C2—C3—F2179.4 (3)F1—C1—C6—C71.3 (5)
Cl—C2—C3—F20.4 (6)C2—C1—C6—C7179.7 (3)
C1—C2—C3—C40.5 (6)C4—C5—C6—C10.2 (5)
Cl—C2—C3—C4179.3 (3)C4—C5—C6—C7179.7 (3)
C2—C3—C4—F3178.6 (3)C1—C6—C7—O1171.8 (4)
F2—C3—C4—F30.3 (6)C5—C6—C7—O18.1 (5)
C2—C3—C4—C50.5 (6)C1—C6—C7—O29.0 (5)
F2—C3—C4—C5179.4 (3)C5—C6—C7—O2171.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.842.658 (4)178
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H2ClF3O2
Mr210.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.4760 (9), 13.654 (3), 12.400 (3)
β (°) 97.16 (3)
V3)751.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.859, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
1578, 1394, 699
Rint0.092
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.132, 1.00
No. of reflections1394
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.82001.842.658 (4)178
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSun, H., Jiang, L., Li, Y.-L., Lu, X. & Xu, H. (2011). Acta Cryst. E67, o2974.  CSD CrossRef IUCr Journals
First citationZhu, X. (2009). Acta Cryst. E65, o1886.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds