[Journal logo]

Volume 69 
Part 1 
Pages o130-o131  
January 2013  

Received 9 December 2012
Accepted 17 December 2012
Online 22 December 2012

Key indicators
Single-crystal X-ray study
T = 291 K
Mean [sigma](C-C) = 0.004 Å
R = 0.057
wR = 0.171
Data-to-parameter ratio = 12.9
Details
Open access

Ethyl (E)-3-(anthracen-9-yl)prop-2-enoate

aInstitute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany,bDepartment of Chemical Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates, and cDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates
Correspondence e-mail: thies@uaeu.ac.ae

In the asymmetric unit of the title compound, C19H16O2, there are two symmetry-independent molecules (A and B) that differ in the conformation of the ester ethoxy group. In the crystal, the molecules form inversion dimers via pairs of C-H...O interactions. Within the dimers, the anthracenyl units have interplanar distances of 0.528 (2) and 0.479 (2) Å for dimers of molecules A and B, respectively. Another short C-H...O contact between symmetry-independent dimers links them into columns parallel to [10-1]. These columns are arranged into (111) layers and there are [pi]-[pi] stacking interactions [centroid-centroid distances = 3.6446 (15) and 3.6531 (15) Å] between the anthracenyl units from the neighbouring columns. In addition, there are C-H...[pi] interactions between the anthracenyl unit of dimers A and dimers B within the same column.

Related literature

For an analogous preparation of the title compound, see: Nguyen & Weizman (2007[Nguyen, K. & Weizman, H. (2007). J. Chem. Educ. 84, 119-121.]). For modeling of the title compound at the B3LYP/6-31G* level, see: Coleman (2007[Coleman, W. F. (2007). J. Chem. Educ. 84, 121-121.]). For crystal structures of photodimerizable arylenes, see: Vishnumurthy et al. (2002[Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2002). Photochem. Photobiol. Sci. 1, 427-430.]); Mascitti & Corey (2006[Mascitti, V. & Corey, E. J. (2006). Tetrahedron Lett. 47, 5879-5882.]); Sonoda (2011[Sonoda, Y. (2011). Molecules, 16, 119-148.]); Schmidt (1964[Schmidt, G. M. J. (1964). J. Chem. Soc., pp. 2014-2021.]). For the photodimerization of anthracenes in the crystal, see: Schmidt (1971[Schmidt, G. M. J. (1971). Pure Appl. Chem., 27, 647-678.]); Ihmels et al. (2000[Ihmels, H., Leusser, D., Pfeiffer, M. & Stalke, D. (2000). Tetrahedron, 56, 6867-6875.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16O2

  • Mr = 276.32

  • Triclinic, [P \overline 1]

  • a = 8.8700 (5) Å

  • b = 12.8918 (7) Å

  • c = 13.1062 (7) Å

  • [alpha] = 84.389 (4)°

  • [beta] = 84.620 (4)°

  • [gamma] = 70.771 (5)°

  • V = 1405.28 (13) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 0.66 mm-1

  • T = 291 K

  • 0.22 × 0.11 × 0.09 mm

Data collection
  • Agilent SuperNova Dual Atlas diffractometer

  • Absorption correction: Gaussian (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.889, Tmax = 0.942

  • 11350 measured reflections

  • 4901 independent reflections

  • 4250 reflections with I > 2[sigma](I)

  • Rint = 0.025

Refinement
  • R[F2 > 2[sigma](F2)] = 0.057

  • wR(F2) = 0.171

  • S = 1.10

  • 4901 reflections

  • 381 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.29 e Å-3

  • [Delta][rho]min = -0.26 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1A/C2A/C7A-C9A/C14A and C2A-C7A rings, respectively.

D-H...A D-H H...A D...A D-H...A
C13A-H13A...O1Ai 0.93 2.56 3.455 (3) 163
C18B-H18B...O2Aii 0.97 2.56 3.422 (3) 148
C3B-H3B...O1Biii 0.93 2.57 3.470 (3) 162
C6A-H6A...O2Biv 0.93 2.67 3.438 (3) 140
C19A-H19E...O1Bv 0.96 2.66 3.409 (3) 135
C6B-H6B...Cg1vi 0.93 2.81 3.447 (3) 126
C8B-H8B...Cg2vi 0.93 2.82 3.439 (3) 124
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x, y, z+1; (v) x-1, y+1, z; (vi) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2545 ).


Acknowledgements

The authors thank the UAEU interdisciplinary grant 31S036 for financial support. They also thank Thirumurugan Prakasam, NYU Abu Dhabi, for the mass spectrometry measurements.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Coleman, W. F. (2007). J. Chem. Educ. 84, 121-121.  [CrossRef] [ChemPort]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [ISI] [CrossRef] [ChemPort] [details]
Ihmels, H., Leusser, D., Pfeiffer, M. & Stalke, D. (2000). Tetrahedron, 56, 6867-6875.  [ISI] [CSD] [CrossRef] [ChemPort]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [ISI] [CrossRef] [ChemPort] [details]
Mascitti, V. & Corey, E. J. (2006). Tetrahedron Lett. 47, 5879-5882.  [CrossRef] [ChemPort]
Nguyen, K. & Weizman, H. (2007). J. Chem. Educ. 84, 119-121.  [CrossRef] [ChemPort]
Schmidt, G. M. J. (1964). J. Chem. Soc., pp. 2014-2021.
Schmidt, G. M. J. (1971). Pure Appl. Chem., 27, 647-678.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Sonoda, Y. (2011). Molecules, 16, 119-148.  [CrossRef] [ChemPort]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2002). Photochem. Photobiol. Sci. 1, 427-430.  [CrossRef] [PubMed] [ChemPort]


Acta Cryst (2013). E69, o130-o131   [ doi:10.1107/S1600536812051033 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.