organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-2-Hy­dr­oxy-3-meth­oxy­benzyl­­idene]-N-methyl­hydrazinecarbo­thio­amide

aDepartment of Chemistry, Sri Krishna Institute of Technology, Bangalore 560 090, India, bDepartment of Chemistry, S. D. M. College of Engineering and Technology, Dharwad 580 002, India, cDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India, and dDepartment of Chemistry, M. S. Ramaiah Institute of Technology, Bangalore 560 054, Karnataka, India
*Correspondence e-mail: muralikp21@gmail.com

(Received 30 August 2012; accepted 5 December 2012; online 8 December 2012)

In the crystal structure of the title compound, C11H15N3O2S, mol­ecules are linked by pairs of N—H⋯O and O—H⋯S hydrogen, forming inversion dimers. These dimers are linked by N—H⋯S hydrogen bonds, forming double-stranded chains propagating along the b-axis direction. The two C atoms of the end chain of the mol­ecule are disordered over two sets os sites [occupancy ratio 0.574 (9):0.426 (9)].

Related literature

For related structures, see: Joseph et al. (2006[Joseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61-70.]); Ren-Gao Zhao et al.(2008[Zhao, R.-G., Zhang, W., Li, J.-K. & Zhang, L.-Y. (2008). Acta Cryst. E64, o1113.]). For the biological activity of thio­semicarbazone Schiff bases, see: Kasuga et al. (2003[Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298-310.]); Murali et al. (2008[Murali Krishna, P., Hussain Reddy, K., Pandey, J. P. & Dayananda, S. (2008). Transition Met. Chem. 33, 661-668.], 2009[Murali Krishna, P. & Hussain Reddy, K. (2009). Inorg. Chim. Acta, 362, 4185-4190.]); Paterson & Donnelly (2011[Paterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005-3018.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O2S

  • Mr = 253.32

  • Monoclinic, P 21 /c

  • a = 13.251 (6) Å

  • b = 6.185 (3) Å

  • c = 16.380 (8) Å

  • β = 113.153 (7)°

  • V = 1234.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.26 × 0.09 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.987

  • 7373 measured reflections

  • 2433 independent reflections

  • 1666 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.180

  • S = 1.06

  • 2433 reflections

  • 175 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.87 (4) 2.42 (4) 3.169 (3) 145 (3)
N2—H2⋯O1i 0.82 (3) 2.29 (4) 3.010 (4) 147 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Thiosemicarbazones emerged an important class of sulfur and nitrogen containing Schiff-bases due to their chemistry and potentially beneficial biological activities, such as antitumor,antibacterial, antiviral and antimalarial activities (Kasuga et al., 2003; Paterson & Donnelly, 2011). In a continuation of our studies on thiosemicarbazone Schiff-bases, we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those found in the literature (Joseph et al., 2006).There is one molecule in the assymetric unit with the end atoms thermally disordered. This molecule exhibits intermolecular N—H···O and O—H···S hydrogen bonds (Table 2) forming a dimer along b axis. These dimers give rise to a zigzag pattern seen along c axis. Further the molecules are packed by weak π···π interactions [centroid–centroid distance 4.495 (5) Å]

Related literature top

For related structures, see: Joseph et al. (2006); Ren-Gao Zhao et al.(2008). For the biological activity of thiosemicarbazone Schiff bases, see: Kasuga et al. (2003); Murali et al. (2008, 2009); Paterson & Donnelly (2011).

Experimental top

The title compound (I)was synthesized by the reaction of 2-hydroxy-3-methoxy benzaldehyde (10 g, 0.1 mol) in 250 ml round bottom flask, 5% acetic acid-water solution of 4 N-methyl hydrazinecarbothioamide (0.1 mol) in ethanol solution and refluxed on a steam bath for 30–45 minutes. The crystalline product which formed was collected by filtration, washed several times with hot water and, then ether, finally dried in vacuo. Then good quality crystals (I)were obtained in a 1:1 mixture of ethanol and n-hexane.

Refinement top

The hydrogen atoms were located with the help of difference fourier maps. Hydrogen atoms for C7, C6 were positioned geometrically and refined using a riding model.

The end group of N-Et was disordered and modelled with the help of part command. The major component i.e. N3–C10–C11 is depicted in the ORTEP diagram. since this group is diordered over two positions, isotropic refinement is done for these 3 atoms. SADI and DFIX commands were used to model the disordered atoms. The hydrogen atoms were fixed for these atoms.

There are two reflections missing from the fcf file according to check cif which may be at high angle beyond the limiting sphere and not possible for recording despite the fact the data was recollected with another crystal.

Structure description top

Thiosemicarbazones emerged an important class of sulfur and nitrogen containing Schiff-bases due to their chemistry and potentially beneficial biological activities, such as antitumor,antibacterial, antiviral and antimalarial activities (Kasuga et al., 2003; Paterson & Donnelly, 2011). In a continuation of our studies on thiosemicarbazone Schiff-bases, we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those found in the literature (Joseph et al., 2006).There is one molecule in the assymetric unit with the end atoms thermally disordered. This molecule exhibits intermolecular N—H···O and O—H···S hydrogen bonds (Table 2) forming a dimer along b axis. These dimers give rise to a zigzag pattern seen along c axis. Further the molecules are packed by weak π···π interactions [centroid–centroid distance 4.495 (5) Å]

For related structures, see: Joseph et al. (2006); Ren-Gao Zhao et al.(2008). For the biological activity of thiosemicarbazone Schiff bases, see: Kasuga et al. (2003); Murali et al. (2008, 2009); Paterson & Donnelly (2011).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structure of title the compound (I)
[Figure 2] Fig. 2. Packing diagram of (I)
2-[(E)-2-Hydroxy-3-methoxybenzylidene]-N- methylhydrazinecarbothioamide top
Crystal data top
C11H15N3O2SF(000) = 536
Mr = 253.32Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1499 reflections
a = 13.251 (6) Åθ = 2.6–25.6°
b = 6.185 (3) ŵ = 0.26 mm1
c = 16.380 (8) ÅT = 293 K
β = 113.153 (7)°Rectangular plate like, yellow
V = 1234.4 (11) Å30.26 × 0.09 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2433 independent reflections
Radiation source: fine-focus sealed tube1666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0.3 pixels mm-1θmax = 26.0°, θmin = 1.7°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 67
Tmin = 0.936, Tmax = 0.987l = 2020
7373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0756P)2 + 1.2001P]
where P = (Fo2 + 2Fc2)/3
2433 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.46 e Å3
4 restraintsΔρmin = 0.37 e Å3
Crystal data top
C11H15N3O2SV = 1234.4 (11) Å3
Mr = 253.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.251 (6) ŵ = 0.26 mm1
b = 6.185 (3) ÅT = 293 K
c = 16.380 (8) Å0.26 × 0.09 × 0.05 mm
β = 113.153 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2433 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1666 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.987Rint = 0.030
7373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0644 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
2433 reflectionsΔρmin = 0.37 e Å3
175 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.87523 (8)0.71851 (17)0.56230 (8)0.0642 (4)
O10.37812 (19)0.2015 (4)0.55013 (16)0.0483 (6)
O20.28859 (18)0.1250 (4)0.60039 (16)0.0515 (7)
N10.7027 (2)0.2534 (4)0.60644 (18)0.0419 (7)
N20.7343 (2)0.4427 (5)0.5791 (2)0.0462 (7)
C10.5554 (2)0.0466 (5)0.61505 (19)0.0355 (7)
C20.4438 (2)0.0358 (5)0.59547 (19)0.0356 (7)
C30.3996 (3)0.1393 (5)0.6244 (2)0.0393 (7)
C40.4666 (3)0.3038 (6)0.6715 (2)0.0457 (8)
C50.5792 (3)0.2945 (6)0.6909 (2)0.0473 (8)
C60.6224 (3)0.1240 (5)0.6625 (2)0.0420 (8)
H60.69720.12110.67480.050*
C70.2363 (3)0.2905 (7)0.6292 (3)0.0617 (11)
H7A0.25300.42840.61070.093*
H7B0.15830.26800.60360.093*
H7C0.26210.28710.69270.093*
C80.5999 (3)0.2336 (5)0.5868 (2)0.0386 (7)
C90.8392 (3)0.4794 (6)0.5909 (2)0.0491 (9)
N30.9010 (4)0.2968 (11)0.6089 (5)0.0524 (17)*0.574 (9)
H30.87560.16780.59550.063*0.574 (9)
C101.0329 (6)0.3596 (12)0.6605 (6)0.076 (3)*0.574 (9)
H10A1.05520.46590.62730.092*0.574 (9)
H10B1.04910.41380.71990.092*0.574 (9)
C111.0867 (7)0.1453 (13)0.6627 (7)0.079 (3)*0.574 (9)
H11A1.07500.05280.70520.119*0.574 (9)
H11B1.16410.16610.67930.119*0.574 (9)
H11C1.05560.07970.60500.119*0.574 (9)
N3A0.9128 (5)0.3405 (12)0.6420 (6)0.043 (2)*0.426 (9)
H3A0.91090.28870.69010.051*0.426 (9)
C10A1.0095 (7)0.2744 (17)0.6053 (6)0.065 (3)*0.426 (9)
H10C0.98880.15370.56410.078*0.426 (9)
H10D1.03340.39590.57990.078*0.426 (9)
C11A1.0909 (11)0.213 (3)0.6964 (8)0.111 (5)*0.426 (9)
H11D1.08440.31110.73950.167*0.426 (9)
H11E1.16390.22070.69770.167*0.426 (9)
H11F1.07630.06840.71000.167*0.426 (9)
H10.309 (3)0.176 (6)0.535 (2)0.055 (11)*
H20.687 (3)0.534 (6)0.556 (2)0.048 (11)*
H40.435 (3)0.420 (6)0.688 (2)0.050 (10)*
H50.634 (3)0.414 (6)0.726 (2)0.060 (10)*
H80.553 (3)0.336 (5)0.557 (2)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0450 (6)0.0550 (6)0.0933 (8)0.0108 (4)0.0280 (5)0.0119 (5)
O10.0348 (13)0.0452 (14)0.0638 (16)0.0000 (11)0.0181 (12)0.0143 (12)
O20.0413 (13)0.0519 (15)0.0639 (15)0.0080 (11)0.0236 (12)0.0098 (12)
N10.0391 (15)0.0401 (15)0.0505 (16)0.0012 (12)0.0217 (13)0.0044 (13)
N20.0349 (15)0.0393 (16)0.066 (2)0.0004 (13)0.0212 (14)0.0096 (15)
C10.0404 (17)0.0351 (17)0.0342 (16)0.0023 (13)0.0181 (14)0.0020 (13)
C20.0396 (17)0.0325 (16)0.0359 (16)0.0003 (13)0.0160 (14)0.0013 (13)
C30.0423 (18)0.0400 (18)0.0408 (17)0.0068 (15)0.0218 (15)0.0035 (15)
C40.057 (2)0.0352 (18)0.051 (2)0.0042 (16)0.0276 (18)0.0058 (15)
C50.053 (2)0.0410 (19)0.051 (2)0.0068 (16)0.0245 (17)0.0094 (16)
C60.0388 (17)0.0431 (18)0.0468 (19)0.0040 (15)0.0197 (15)0.0012 (15)
C70.055 (2)0.063 (3)0.075 (3)0.0192 (19)0.035 (2)0.004 (2)
C80.0355 (17)0.0373 (17)0.0426 (18)0.0004 (15)0.0151 (14)0.0042 (15)
C90.0367 (18)0.051 (2)0.059 (2)0.0024 (16)0.0194 (16)0.0060 (17)
Geometric parameters (Å, º) top
S1—C91.676 (4)C7—H7C0.9600
O1—C21.360 (4)C8—H80.89 (3)
O1—H10.87 (4)C9—N3A1.322 (8)
O2—C31.367 (4)C9—N31.358 (7)
O2—C71.416 (4)N3—C101.661 (8)
N1—C81.277 (4)N3—H30.8600
N1—N21.376 (4)C10—C111.499 (7)
N2—C91.346 (4)C10—H10A0.9700
N2—H20.82 (3)C10—H10B0.9700
C1—C21.387 (4)C11—H11A0.9600
C1—C61.401 (4)C11—H11B0.9600
C1—C81.454 (4)C11—H11C0.9600
C2—C31.399 (4)N3A—C10A1.667 (8)
C3—C41.371 (5)N3A—H3A0.8600
C4—C51.399 (5)C10A—C11A1.506 (7)
C4—H40.93 (4)C10A—H10C0.9700
C5—C61.366 (5)C10A—H10D0.9700
C5—H51.04 (4)C11A—H11D0.9600
C6—H60.9300C11A—H11E0.9600
C7—H7A0.9600C11A—H11F0.9600
C7—H7B0.9600
C2—O1—H1113 (3)N1—C8—H8121 (2)
C3—O2—C7118.0 (3)C1—C8—H8118 (2)
C8—N1—N2115.5 (3)N3A—C9—N2116.4 (4)
C9—N2—N1121.7 (3)N2—C9—N3113.1 (4)
C9—N2—H2120 (2)N3A—C9—S1122.0 (4)
N1—N2—H2118 (2)N2—C9—S1120.0 (3)
C2—C1—C6118.5 (3)N3—C9—S1125.5 (3)
C2—C1—C8119.6 (3)C9—N3—C10109.9 (5)
C6—C1—C8121.9 (3)C9—N3—H3125.1
O1—C2—C1119.0 (3)C10—N3—H3125.1
O1—C2—C3120.3 (3)C11—C10—N3101.6 (6)
C1—C2—C3120.6 (3)C11—C10—H10A111.4
O2—C3—C4126.5 (3)N3—C10—H10A111.4
O2—C3—C2113.5 (3)C11—C10—H10B111.4
C4—C3—C2120.0 (3)N3—C10—H10B111.4
C3—C4—C5119.6 (3)H10A—C10—H10B109.3
C3—C4—H4118 (2)C9—N3A—C10A114.2 (6)
C5—C4—H4122 (2)C9—N3A—H3A122.9
C6—C5—C4120.4 (3)C10A—N3A—H3A122.9
C6—C5—H5116 (2)C11A—C10A—N3A93.3 (9)
C4—C5—H5123 (2)C11A—C10A—H10C113.1
C5—C6—C1120.7 (3)N3A—C10A—H10C113.1
C5—C6—H6119.6C11A—C10A—H10D113.1
C1—C6—H6119.6N3A—C10A—H10D113.1
O2—C7—H7A109.5H10C—C10A—H10D110.4
O2—C7—H7B109.5C10A—C11A—H11D109.5
H7A—C7—H7B109.5C10A—C11A—H11E109.5
O2—C7—H7C109.5H11D—C11A—H11E109.5
H7A—C7—H7C109.5C10A—C11A—H11F109.5
H7B—C7—H7C109.5H11D—C11A—H11F109.5
N1—C8—C1121.5 (3)H11E—C11A—H11F109.5
C8—N1—N2—C9176.1 (3)C8—C1—C6—C5177.8 (3)
C6—C1—C2—O1179.4 (3)N2—N1—C8—C1177.1 (3)
C8—C1—C2—O10.1 (4)C2—C1—C8—N1177.3 (3)
C6—C1—C2—C31.5 (4)C6—C1—C8—N12.2 (5)
C8—C1—C2—C3178.0 (3)N1—N2—C9—N3A10.2 (6)
C7—O2—C3—C42.6 (5)N1—N2—C9—N316.6 (6)
C7—O2—C3—C2177.8 (3)N1—N2—C9—S1176.2 (3)
O1—C2—C3—O21.6 (4)N3A—C9—N3—C1054.4 (10)
C1—C2—C3—O2179.5 (3)N2—C9—N3—C10157.7 (5)
O1—C2—C3—C4178.8 (3)S1—C9—N3—C1035.9 (8)
C1—C2—C3—C40.9 (5)C9—N3—C10—C11172.4 (6)
O2—C3—C4—C5180.0 (3)N2—C9—N3A—C10A139.6 (6)
C2—C3—C4—C50.5 (5)N3—C9—N3A—C10A51.5 (9)
C3—C4—C5—C60.7 (5)S1—C9—N3A—C10A54.8 (9)
C4—C5—C6—C11.3 (5)C9—N3A—C10A—C11A155.8 (9)
C2—C1—C6—C51.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.87 (4)2.42 (4)3.169 (3)145 (3)
N2—H2···O1i0.82 (3)2.29 (4)3.010 (4)147 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H15N3O2S
Mr253.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.251 (6), 6.185 (3), 16.380 (8)
β (°) 113.153 (7)
V3)1234.4 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.26 × 0.09 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.936, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7373, 2433, 1666
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.180, 1.06
No. of reflections2433
No. of parameters175
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.37

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.87 (4)2.42 (4)3.169 (3)145 (3)
N2—H2···O1i0.82 (3)2.29 (4)3.010 (4)147 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The work was financed by a grant (project No: VTU/Aca./2010–11/A–9/11341) from Visvesvaraya Technological University. YPP thanks the CSIR, India, for a fellowship.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationKasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMurali Krishna, P. & Hussain Reddy, K. (2009). Inorg. Chim. Acta, 362, 4185–4190.  Google Scholar
First citationMurali Krishna, P., Hussain Reddy, K., Pandey, J. P. & Dayananda, S. (2008). Transition Met. Chem. 33, 661–668.  Web of Science CrossRef Google Scholar
First citationPaterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005–3018.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, R.-G., Zhang, W., Li, J.-K. & Zhang, L.-Y. (2008). Acta Cryst. E64, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds