organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Prop-2-yn-1-yl)-5H-dibenzo[b,f]azepine: ortho­rhom­bic polymorph

aDepartment of Physics, Faculty of Science, An Najah National University, Nabtus West Bank, Palestine, bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: lokanath@physics.uni-mysore.ac.in

(Received 22 November 2012; accepted 28 November 2012; online 5 December 2012)

In the title ortho­rhom­bic polymorph (space group Iba2), C17H13N, the dihedral angle between the benzene rings is 55.99 (10)° and the azepine ring adopts a boat conformation. In the crystal, mol­ecules are linked by C—H⋯π contacts. The previously-reported polymorph [Yousuf et al. (2012[Yousuf, S., Khan, M., Fazal, S., Butt, M. & Basha, F. Z. (2012). Acta Cryst. E68, o1101.]). Acta Cryst. E68, o1101] crystallizes in the monoclinic system (space group P21/c) with two mol­ecules in the asymmetric unit.

Related literature

For the previously-reported monoclinic polymorph, see: Yousuf et al. (2012[Yousuf, S., Khan, M., Fazal, S., Butt, M. & Basha, F. Z. (2012). Acta Cryst. E68, o1101.]). For biochemical background, see: Sadashiva et al. (2005[Sadashiva, M. P., Mallesha, H., KarunakaraMurthy, K. & Rangappa, K. S. (2005). Bioorg. Med. Chem. Lett. 15, 1811-1814.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N

  • Mr = 231.28

  • Orthorhombic, I b a 2

  • a = 16.2444 (6) Å

  • b = 21.1700 (6) Å

  • c = 7.2399 (2) Å

  • V = 2489.76 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 103 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 10081 measured reflections

  • 1199 independent reflections

  • 1132 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.09

  • 1199 reflections

  • 164 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.08 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2/C3/C12–C15 and C6-C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg2i 0.95 2.75 3.659 (2) 160
C18—H18⋯Cg1ii 0.95 2.58 3.512 (2) 167
Symmetry codes: (i) [-x, y, z-{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our studies of new derivatives useful for tailoring of biologically active 5-membered heterocyclic rings such as 3,5-disubstituted isoxazole (Sadashiva et al., 2005), we now describe the title compound.

In the title molecule, C17 H13 N (Fig. 1.), benzene rings fused to azepine rings are nearly planar and its geometry is similar to 5-(Prop-2-ynyl)-5H-dibenzo[b,f]azepine (Yousuf et al., 2012). The dihedral angle between the benzene rings is 55.99 (10)° which is almost equal and large compared to the two molecules repectively for the first polymorph.

Seven-membered azepine ring adopts a boat conformation as indicated by the puckering parameters Q2 = 0.7126 (18) Å, Q3 = 0.2154 (17) Å, φ2 = 177.93 (15) °, φ3 = 178.1 (5) °, and the total puckering amplitude QT = 0.7444 (17) Å. The title molecule adopts butterfly shape which may be essential for inhibition pocket which is similar to the reported polymorph (Yousuf et al., 2012).

The packing of the title molecules is as shown (Fig. 2.) and features short C—H···π contacts (Table 1).

Related literature top

For the previously-reported monoclinic polymorph, see: Yousuf et al. (2012). For biochemical background, see: Sadashiva et al. (2005).

Experimental top

5H-dibenzo[b,f]azepine (1, 0.0026 mol) was taken in a mixture of toluene and water in the ratio 1:1,was added sodium hydroxide (0.026 mol) followed by tetra-n-butylammonium bromide (TBAB) (0.00286 mol) at room temperature. After 15 minutes, propargyl bromide was added (0.00286 mol) at room temperature. Then, the resulting reaction mixture was heated at 60°C for 5 h. After completion of reaction (monitored by TLC), the reaction mixture was diluted with water (50 ml). The aqueous layer was extracted with ethyl acetate (3 × 20 ml), the combined ethyl acetate layer was washed with 0.1 N hydrochloric acid (2 × 25 ml), followed by brine solution (2 × 25 ml). Then, the organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to afford crude 2, which was purified by column chromatography over silica gel (60–120 mesh) using Hexane: Ethyl acetate mixture in 9.5:0.5 ratios as eluent. The pure compound 2 was crystallized in ethyl acetate and hexane to obtain yellow blocks.

1H NMR (DMSO-d6, 300 MHz): δ 7.33 (t, J=7.2 Hz, 2H), 7.13 (t, J=8.7 Hz, 4H), 7.02 (t, J=7.2 Hz, 2H), 6.75 (s, 2H), 4.51 (d, J=1.8 Hz, 2H), 3.08 (s, 1H).

MS (M++1): 232. Melting point (°C): 90 (Uncorrected)

Refinement top

In the absence of significant anomalous dispersion effects Friedel pairs were merged. All the hydrogen atoms of the compound are fixed geometrically (C—H= 0.93–0.97 Å) and allowed to ride on their parent atoms. The poorly fitted reflections (2 0 0) and (1 1 0) were omitted during refinement.

Structure description top

As part of our studies of new derivatives useful for tailoring of biologically active 5-membered heterocyclic rings such as 3,5-disubstituted isoxazole (Sadashiva et al., 2005), we now describe the title compound.

In the title molecule, C17 H13 N (Fig. 1.), benzene rings fused to azepine rings are nearly planar and its geometry is similar to 5-(Prop-2-ynyl)-5H-dibenzo[b,f]azepine (Yousuf et al., 2012). The dihedral angle between the benzene rings is 55.99 (10)° which is almost equal and large compared to the two molecules repectively for the first polymorph.

Seven-membered azepine ring adopts a boat conformation as indicated by the puckering parameters Q2 = 0.7126 (18) Å, Q3 = 0.2154 (17) Å, φ2 = 177.93 (15) °, φ3 = 178.1 (5) °, and the total puckering amplitude QT = 0.7444 (17) Å. The title molecule adopts butterfly shape which may be essential for inhibition pocket which is similar to the reported polymorph (Yousuf et al., 2012).

The packing of the title molecules is as shown (Fig. 2.) and features short C—H···π contacts (Table 1).

For the previously-reported monoclinic polymorph, see: Yousuf et al. (2012). For biochemical background, see: Sadashiva et al. (2005).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along the crystallographic a axis. Dashed lines indicates short contacts.
5-(Prop-2-yn-1-yl)-5H-dibenzo[b,f]azepine top
Crystal data top
C17H13NF(000) = 976
Mr = 231.28Dx = 1.234 Mg m3
Orthorhombic, Iba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2cCell parameters from 1199 reflections
a = 16.2444 (6) Åθ = 3.2–25.0°
b = 21.1700 (6) ŵ = 0.07 mm1
c = 7.2399 (2) ÅT = 103 K
V = 2489.76 (13) Å3Block, yellow
Z = 80.35 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1132 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
Detector resolution: 16.0839 pixels mm-1h = 1919
ω scansk = 2525
10081 measured reflectionsl = 88
1199 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.3725P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1199 reflectionsΔρmax = 0.08 e Å3
164 parametersΔρmin = 0.10 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (6)
Crystal data top
C17H13NV = 2489.76 (13) Å3
Mr = 231.28Z = 8
Orthorhombic, Iba2Mo Kα radiation
a = 16.2444 (6) ŵ = 0.07 mm1
b = 21.1700 (6) ÅT = 103 K
c = 7.2399 (2) Å0.35 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
1132 reflections with I > 2σ(I)
10081 measured reflectionsRint = 0.027
1199 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.067H-atom parameters constrained
S = 1.09Δρmax = 0.08 e Å3
1199 reflectionsΔρmin = 0.10 e Å3
164 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23053 (8)0.36797 (6)0.6618 (2)0.0409 (4)
C20.31311 (10)0.36894 (7)0.5957 (3)0.0414 (5)
C30.34432 (10)0.42627 (8)0.5292 (3)0.0492 (6)
C40.29519 (12)0.48379 (8)0.5170 (3)0.0560 (6)
C50.21579 (11)0.48775 (7)0.4806 (3)0.0538 (6)
C60.15967 (10)0.43569 (8)0.4423 (3)0.0450 (5)
C70.16937 (9)0.37583 (7)0.5219 (2)0.0399 (5)
C80.11790 (10)0.32691 (8)0.4686 (3)0.0483 (6)
C90.05556 (11)0.33719 (9)0.3419 (3)0.0592 (7)
C100.04355 (11)0.39633 (10)0.2688 (3)0.0635 (7)
C110.09515 (11)0.44467 (9)0.3192 (3)0.0571 (6)
C120.36307 (11)0.31589 (9)0.5992 (3)0.0532 (6)
C130.44347 (12)0.31917 (11)0.5374 (3)0.0705 (8)
C140.47460 (12)0.37508 (13)0.4711 (4)0.0791 (9)
C150.42559 (12)0.42769 (11)0.4679 (4)0.0691 (8)
C160.21109 (11)0.32276 (8)0.8082 (3)0.0491 (6)
C170.26199 (11)0.33371 (8)0.9703 (3)0.0474 (6)
C180.30303 (14)0.34250 (9)1.1020 (3)0.0616 (7)
H40.323400.522500.537400.0670*
H50.192700.529000.479200.0650*
H80.125500.286000.519500.0580*
H90.021000.303200.305400.0710*
H100.000100.403700.184100.0760*
H110.086500.485500.268300.0690*
H120.341900.277000.644300.0640*
H130.477300.282600.540700.0850*
H140.529700.377200.427900.0950*
H150.447600.466300.422600.0830*
H16A0.152300.326800.842400.0590*
H16B0.220300.279300.762400.0590*
H180.336100.349601.208200.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0432 (7)0.0429 (7)0.0367 (8)0.0037 (6)0.0005 (6)0.0061 (6)
C20.0424 (8)0.0505 (9)0.0314 (8)0.0034 (8)0.0036 (8)0.0045 (7)
C30.0494 (9)0.0594 (10)0.0389 (10)0.0153 (8)0.0019 (8)0.0043 (8)
C40.0762 (12)0.0439 (10)0.0479 (11)0.0187 (8)0.0020 (10)0.0015 (8)
C50.0747 (11)0.0393 (9)0.0474 (11)0.0003 (8)0.0066 (11)0.0039 (8)
C60.0506 (9)0.0464 (8)0.0380 (9)0.0061 (7)0.0079 (8)0.0023 (8)
C70.0385 (8)0.0449 (8)0.0362 (9)0.0031 (7)0.0050 (7)0.0001 (7)
C80.0464 (9)0.0486 (9)0.0498 (11)0.0009 (8)0.0006 (9)0.0001 (8)
C90.0498 (10)0.0693 (12)0.0584 (13)0.0044 (9)0.0072 (10)0.0051 (10)
C100.0506 (10)0.0866 (14)0.0533 (13)0.0091 (11)0.0072 (10)0.0044 (12)
C110.0574 (11)0.0628 (11)0.0511 (11)0.0143 (9)0.0018 (10)0.0122 (9)
C120.0539 (10)0.0610 (11)0.0448 (11)0.0056 (9)0.0074 (9)0.0068 (9)
C130.0560 (11)0.1000 (17)0.0554 (13)0.0212 (12)0.0066 (11)0.0157 (13)
C140.0453 (11)0.131 (2)0.0610 (14)0.0082 (12)0.0035 (11)0.0112 (15)
C150.0540 (11)0.0919 (15)0.0615 (13)0.0257 (11)0.0031 (11)0.0036 (13)
C160.0545 (10)0.0483 (9)0.0446 (11)0.0065 (8)0.0006 (9)0.0095 (8)
C170.0632 (11)0.0407 (8)0.0384 (10)0.0004 (8)0.0064 (10)0.0056 (8)
C180.0885 (15)0.0558 (11)0.0404 (11)0.0061 (11)0.0077 (11)0.0014 (9)
Geometric parameters (Å, º) top
N1—C21.424 (2)C14—C151.369 (3)
N1—C71.429 (2)C16—C171.454 (3)
N1—C161.463 (2)C17—C181.178 (3)
C2—C31.401 (2)C4—H40.9500
C2—C121.386 (2)C5—H50.9500
C3—C41.459 (2)C8—H80.9500
C3—C151.393 (3)C9—H90.9500
C4—C51.319 (3)C10—H100.9500
C5—C61.457 (2)C11—H110.9500
C6—C71.401 (2)C12—H120.9500
C6—C111.389 (3)C13—H130.9500
C7—C81.386 (2)C14—H140.9500
C8—C91.384 (3)C15—H150.9500
C9—C101.373 (3)C16—H16A0.9900
C10—C111.372 (3)C16—H16B0.9900
C12—C131.382 (3)C18—H180.9500
C13—C141.374 (4)
C2—N1—C7114.53 (14)C3—C4—H4117.00
C2—N1—C16117.15 (13)C5—C4—H4117.00
C7—N1—C16116.10 (13)C4—C5—H5117.00
N1—C2—C3117.96 (14)C6—C5—H5116.00
N1—C2—C12122.26 (15)C7—C8—H8120.00
C3—C2—C12119.77 (16)C9—C8—H8120.00
C2—C3—C4123.10 (16)C8—C9—H9120.00
C2—C3—C15118.11 (17)C10—C9—H9120.00
C4—C3—C15118.76 (17)C9—C10—H10120.00
C3—C4—C5126.88 (16)C11—C10—H10120.00
C4—C5—C6127.00 (15)C6—C11—H11119.00
C5—C6—C7122.38 (16)C10—C11—H11119.00
C5—C6—C11119.39 (16)C2—C12—H12120.00
C7—C6—C11118.21 (15)C13—C12—H12120.00
N1—C7—C6118.38 (14)C12—C13—H13120.00
N1—C7—C8122.01 (14)C14—C13—H13120.00
C6—C7—C8119.58 (15)C13—C14—H14120.00
C7—C8—C9120.57 (16)C15—C14—H14120.00
C8—C9—C10120.19 (17)C3—C15—H15119.00
C9—C10—C11119.39 (18)C14—C15—H15119.00
C6—C11—C10121.97 (18)N1—C16—H16A109.00
C2—C12—C13120.44 (18)N1—C16—H16B109.00
C12—C13—C14120.3 (2)C17—C16—H16A109.00
C13—C14—C15119.5 (2)C17—C16—H16B109.00
C3—C15—C14121.9 (2)H16A—C16—H16B108.00
N1—C16—C17110.96 (14)C17—C18—H18180.00
C16—C17—C18179.8 (2)
C7—N1—C2—C369.0 (2)C4—C3—C15—C14178.4 (2)
C7—N1—C2—C12112.4 (2)C3—C4—C5—C60.8 (4)
C16—N1—C2—C3149.95 (18)C4—C5—C6—C732.0 (3)
C16—N1—C2—C1228.6 (3)C4—C5—C6—C11146.4 (2)
C2—N1—C7—C672.36 (18)C5—C6—C7—N17.6 (3)
C2—N1—C7—C8110.12 (17)C5—C6—C7—C8174.84 (18)
C16—N1—C7—C6146.21 (16)C11—C6—C7—N1174.02 (16)
C16—N1—C7—C831.3 (2)C11—C6—C7—C83.6 (3)
C2—N1—C16—C1758.9 (2)C5—C6—C11—C10175.77 (19)
C7—N1—C16—C17160.75 (14)C7—C6—C11—C102.7 (3)
N1—C2—C3—C42.9 (3)N1—C7—C8—C9175.51 (16)
N1—C2—C3—C15178.7 (2)C6—C7—C8—C92.0 (3)
C12—C2—C3—C4178.5 (2)C7—C8—C9—C100.6 (3)
C12—C2—C3—C150.1 (3)C8—C9—C10—C111.6 (3)
N1—C2—C12—C13178.59 (19)C9—C10—C11—C60.1 (3)
C3—C2—C12—C130.0 (3)C2—C12—C13—C140.3 (3)
C2—C3—C4—C533.6 (4)C12—C13—C14—C150.5 (4)
C15—C3—C4—C5144.8 (2)C13—C14—C15—C30.4 (4)
C2—C3—C15—C140.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2/C3/C12–C15 and C6-C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg2i0.952.753.659 (2)160
C18—H18···Cg1ii0.952.583.512 (2)167
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H13N
Mr231.28
Crystal system, space groupOrthorhombic, Iba2
Temperature (K)103
a, b, c (Å)16.2444 (6), 21.1700 (6), 7.2399 (2)
V3)2489.76 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10081, 1199, 1132
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.09
No. of reflections1199
No. of parameters164
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.08, 0.10

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2/C3/C12–C15 and C6-C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg2i0.952.753.659 (2)160
C18—H18···Cg1ii0.952.583.512 (2)167
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1.
 

Acknowledgements

SMK thanks UGC–BRS and University of Mysore for the award of a fellowship. MPS gratefully acknowledges financial support (grant No. 37–456/2009[SR]) from the University Grants Commission, New Delhi, India.

References

First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSadashiva, M. P., Mallesha, H., KarunakaraMurthy, K. & Rangappa, K. S. (2005). Bioorg. Med. Chem. Lett. 15, 1811–1814.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousuf, S., Khan, M., Fazal, S., Butt, M. & Basha, F. Z. (2012). Acta Cryst. E68, o1101.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds