organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­benzo­yl)-3-(2-tri­fluoro­methyl­phen­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: aminbadshah@yahoo.com, mkhawarrauf@yahoo.co.uk

(Received 27 November 2012; accepted 28 November 2012; online 5 December 2012)

The dihedral angle between the benzene rings in the title compound, C15H10ClF3N2OS, is 54.02 (4)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, N—H⋯S hydrogen bonds link the mol­ecules into inversion dimers.

Related literature

For our previous work on the structural and coordination chemistry of N,N′-disubstituted thio­ureas and a related structure, see: Rauf et al. (2012[Rauf, M. K., Ebihara, M., Badshah, A. & Imtiaz-ud-Din (2012). Acta Cryst. E68, o119.]). For a description of the Cambridge Structural Database, see: Allen et al. (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClF3N2OS

  • Mr = 358.76

  • Triclinic, [P \overline 1]

  • a = 7.705 (3) Å

  • b = 8.348 (3) Å

  • c = 12.465 (5) Å

  • α = 84.92 (1)°

  • β = 72.913 (9)°

  • γ = 86.272 (11)°

  • V = 762.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 123 K

  • 0.45 × 0.36 × 0.28 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • 5989 measured reflections

  • 3408 independent reflections

  • 3240 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.075

  • S = 1.07

  • 3408 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.88 2.58 3.4032 (16) 157
N2—H2⋯O1 0.88 1.91 2.6179 (16) 136
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari.]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]).

Supporting information


Comment top

The background to this study has been set out in our previous work for the structural and coordination chemistry of N,N'-disubstituted thioureas (Rauf et al., 2012). Herein, as a continuation of these crytallographic studies, the structure of the title compound (I) is described, Fig. 1. Compared to N-benzoyl-N'-phenylthioureas [Cambridge Structural Database (Mogul Version 1.7; Allen, 2002], the the trifluoromethyl moiety at C(10), implies no significant effect on these bond lengths and show the molecule to exist in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar, as reflected by the torsion angles C(2)—N(1)—C(1)—O(1) [0.3 (2)] and N(2)—C(2)—N(1)—C(1) [2.0 (2)]. This is associated with the expected typical thiourea intramolecular N—H···O hydrogen bond, forming a six-membered ring commonly observed in this class of compounds (Rauf et al., 2012). In the crystal packing of (I), intermolecular N—H···S H–bonds link the molecules into centrosymmetric dimers (Fig.2).

Related literature top

For our previous work on the structural and coordination chemistry of N,N'-disubstituted thioureas and a related structure, see: Rauf et al. (2012). For a description of the Cambridge Structural Database, see: Allen et al. (2002).

Experimental top

Freshly prepared 2-chlorobenzoylisothiocyanate (1.98 g, 10 mmol) was dissolved in tetrahydrofuran (35 ml) and stirred for 40 minutes. Afterwards neat 2-trifluoromethylaniline (1.61 g, 10 mmol) was added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from chloroform to give crystals of the title compound (I), with an overall yield of 94% (3.4 g). M.P. 156–157°C Anal. calcd. for C15H10ClF3N2OS; C, 50.22 H, 2.81 N, 7.81 S, 8.94% Found: C, 50.20 H, 2.80 N, 7.81 S, 8.93%.

Refinement top

The F atoms of the trifluoromethyl group are disordered over two sites with a site occupation factor of 0.52 (9):0.48 (9) for the major and minor occupied sites respectively and were refined isotropically. Hydrogen atoms were included in calculated positions and refined as riding on their parent atom with N—H = 0.88 Å and Uiso(H) = 1.2U(Neq), Caromatic—H = 0.95 Å and Uiso(H) = 1.2U(Ceq).

Structure description top

The background to this study has been set out in our previous work for the structural and coordination chemistry of N,N'-disubstituted thioureas (Rauf et al., 2012). Herein, as a continuation of these crytallographic studies, the structure of the title compound (I) is described, Fig. 1. Compared to N-benzoyl-N'-phenylthioureas [Cambridge Structural Database (Mogul Version 1.7; Allen, 2002], the the trifluoromethyl moiety at C(10), implies no significant effect on these bond lengths and show the molecule to exist in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar, as reflected by the torsion angles C(2)—N(1)—C(1)—O(1) [0.3 (2)] and N(2)—C(2)—N(1)—C(1) [2.0 (2)]. This is associated with the expected typical thiourea intramolecular N—H···O hydrogen bond, forming a six-membered ring commonly observed in this class of compounds (Rauf et al., 2012). In the crystal packing of (I), intermolecular N—H···S H–bonds link the molecules into centrosymmetric dimers (Fig.2).

For our previous work on the structural and coordination chemistry of N,N'-disubstituted thioureas and a related structure, see: Rauf et al. (2012). For a description of the Cambridge Structural Database, see: Allen et al. (2002).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen bonds shown as dashed lines.
1-(2-Chlorobenzoyl)-3-(2-trifluoromethylphenyl)thiourea top
Crystal data top
C15H10ClF3N2OSZ = 2
Mr = 358.76F(000) = 364
Triclinic, P1Dx = 1.562 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.705 (3) ÅCell parameters from 2652 reflections
b = 8.348 (3) Åθ = 3.1–27.5°
c = 12.465 (5) ŵ = 0.42 mm1
α = 84.92 (1)°T = 123 K
β = 72.913 (9)°Block, colorless
γ = 86.272 (11)°0.45 × 0.36 × 0.28 mm
V = 762.7 (5) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3240 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.023
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 14.62 pixels mm-1h = 810
ω scansk = 1010
5989 measured reflectionsl = 1612
3408 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0273P)2 + 0.4772P]
where P = (Fo2 + 2Fc2)/3
3408 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H10ClF3N2OSγ = 86.272 (11)°
Mr = 358.76V = 762.7 (5) Å3
Triclinic, P1Z = 2
a = 7.705 (3) ÅMo Kα radiation
b = 8.348 (3) ŵ = 0.42 mm1
c = 12.465 (5) ÅT = 123 K
α = 84.92 (1)°0.45 × 0.36 × 0.28 mm
β = 72.913 (9)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3240 reflections with I > 2σ(I)
5989 measured reflectionsRint = 0.023
3408 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.07Δρmax = 0.38 e Å3
3408 reflectionsΔρmin = 0.21 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.88846 (18)0.27682 (16)0.40388 (11)0.0167 (3)
O11.00871 (14)0.25013 (13)0.31743 (8)0.0241 (2)
N10.72626 (15)0.35754 (14)0.40451 (9)0.0171 (2)
H10.64880.37120.47110.020*
C20.67122 (17)0.41979 (16)0.31202 (11)0.0157 (2)
S10.47107 (4)0.52082 (4)0.33205 (3)0.01981 (10)
N20.78777 (15)0.39383 (14)0.21154 (9)0.0181 (2)
H20.88740.33490.20970.022*
C30.91513 (17)0.22916 (16)0.51696 (11)0.0161 (3)
C40.79470 (18)0.13899 (16)0.60350 (11)0.0166 (3)
C50.8315 (2)0.09787 (17)0.70526 (12)0.0215 (3)
H50.74860.03670.76370.026*
C60.9904 (2)0.14674 (18)0.72090 (13)0.0243 (3)
H61.01500.12060.79090.029*
C71.1135 (2)0.23331 (19)0.63536 (13)0.0255 (3)
H71.22280.26520.64630.031*
C81.07667 (19)0.27344 (18)0.53359 (12)0.0219 (3)
H81.16210.33160.47460.026*
Cl10.60119 (5)0.06558 (4)0.58431 (3)0.02446 (10)
C90.76060 (17)0.45602 (16)0.10645 (10)0.0157 (3)
C100.72840 (17)0.35187 (16)0.03331 (11)0.0168 (3)
C110.71224 (18)0.41280 (17)0.07151 (11)0.0182 (3)
H110.69020.34240.12150.022*
C120.72833 (18)0.57592 (17)0.10270 (11)0.0194 (3)
H120.71740.61720.17400.023*
C130.76050 (19)0.67912 (17)0.02973 (12)0.0211 (3)
H130.77150.79090.05130.025*
C140.77660 (19)0.61922 (17)0.07490 (12)0.0199 (3)
H140.79850.69010.12470.024*
C150.7096 (2)0.17576 (17)0.06715 (12)0.0221 (3)
F1B0.655 (4)0.094 (4)0.007 (3)0.031 (2)0.48 (9)
F2B0.879 (4)0.112 (3)0.082 (2)0.027 (2)0.48 (9)
F3B0.582 (2)0.1436 (14)0.1620 (9)0.040 (4)0.48 (9)
F1A0.690 (5)0.096 (4)0.015 (3)0.035 (3)0.52 (9)
F2A0.848 (3)0.098 (3)0.086 (2)0.031 (2)0.52 (9)
F3A0.5736 (17)0.1467 (12)0.1633 (7)0.030 (3)0.52 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0175 (6)0.0172 (6)0.0149 (6)0.0001 (5)0.0043 (5)0.0007 (5)
O10.0208 (5)0.0306 (6)0.0164 (5)0.0078 (4)0.0008 (4)0.0000 (4)
N10.0154 (5)0.0237 (6)0.0105 (5)0.0035 (4)0.0020 (4)0.0019 (4)
C20.0169 (6)0.0172 (6)0.0130 (6)0.0007 (5)0.0037 (5)0.0028 (5)
S10.01603 (16)0.02989 (19)0.01299 (16)0.00589 (13)0.00426 (12)0.00353 (13)
N20.0174 (5)0.0241 (6)0.0116 (5)0.0057 (4)0.0037 (4)0.0019 (4)
C30.0164 (6)0.0168 (6)0.0152 (6)0.0026 (5)0.0053 (5)0.0019 (5)
C40.0178 (6)0.0153 (6)0.0173 (6)0.0000 (5)0.0059 (5)0.0022 (5)
C50.0281 (7)0.0189 (7)0.0170 (6)0.0004 (5)0.0069 (5)0.0015 (5)
C60.0318 (8)0.0236 (7)0.0220 (7)0.0063 (6)0.0160 (6)0.0032 (6)
C70.0213 (7)0.0282 (8)0.0321 (8)0.0022 (6)0.0151 (6)0.0059 (6)
C80.0173 (6)0.0237 (7)0.0242 (7)0.0004 (5)0.0056 (5)0.0010 (5)
Cl10.02307 (17)0.02779 (19)0.02433 (18)0.00967 (13)0.00880 (13)0.00143 (13)
C90.0136 (6)0.0212 (6)0.0105 (6)0.0020 (5)0.0012 (4)0.0017 (5)
C100.0150 (6)0.0195 (6)0.0140 (6)0.0006 (5)0.0017 (5)0.0015 (5)
C110.0170 (6)0.0239 (7)0.0134 (6)0.0004 (5)0.0033 (5)0.0032 (5)
C120.0156 (6)0.0273 (7)0.0136 (6)0.0001 (5)0.0030 (5)0.0028 (5)
C130.0207 (6)0.0196 (7)0.0214 (7)0.0017 (5)0.0044 (5)0.0028 (5)
C140.0208 (6)0.0209 (7)0.0182 (6)0.0013 (5)0.0052 (5)0.0037 (5)
C150.0263 (7)0.0209 (7)0.0181 (7)0.0001 (5)0.0051 (6)0.0010 (5)
F1B0.043 (6)0.020 (2)0.034 (6)0.010 (4)0.015 (5)0.005 (3)
F2B0.021 (5)0.016 (3)0.042 (2)0.003 (3)0.011 (3)0.003 (2)
F3B0.046 (6)0.023 (5)0.042 (6)0.003 (3)0.004 (4)0.004 (4)
F1A0.054 (9)0.025 (2)0.029 (3)0.010 (5)0.014 (6)0.0042 (18)
F2A0.023 (5)0.024 (3)0.049 (3)0.001 (3)0.013 (3)0.000 (2)
F3A0.032 (4)0.029 (5)0.019 (4)0.009 (3)0.002 (3)0.014 (3)
Geometric parameters (Å, º) top
C1—O11.2240 (17)C8—H80.9500
C1—N11.3790 (17)C9—C141.387 (2)
C1—C31.4992 (18)C9—C101.3964 (19)
N1—C21.3898 (17)C10—C111.3968 (19)
N1—H10.8800C10—C151.497 (2)
C2—N21.3356 (17)C11—C121.386 (2)
C2—S11.6714 (14)C11—H110.9500
N2—C91.4338 (17)C12—C131.389 (2)
N2—H20.8800C12—H120.9500
C3—C41.3964 (19)C13—C141.392 (2)
C3—C81.3978 (19)C13—H130.9500
C4—C51.3889 (19)C14—H140.9500
C4—Cl11.7350 (14)C15—F2A1.28 (2)
C5—C61.386 (2)C15—F3B1.317 (13)
C5—H50.9500C15—F1A1.32 (3)
C6—C71.384 (2)C15—F3A1.355 (10)
C6—H60.9500C15—F1B1.37 (3)
C7—C81.388 (2)C15—F2B1.43 (2)
C7—H70.9500
O1—C1—N1123.21 (12)C9—C10—C11119.71 (13)
O1—C1—C3120.74 (12)C9—C10—C15120.33 (12)
N1—C1—C3115.98 (11)C11—C10—C15119.96 (12)
C1—N1—C2127.40 (11)C12—C11—C10120.07 (13)
C1—N1—H1116.3C12—C11—H11120.0
C2—N1—H1116.3C10—C11—H11120.0
N2—C2—N1115.63 (12)C11—C12—C13120.04 (13)
N2—C2—S1124.81 (10)C11—C12—H12120.0
N1—C2—S1119.55 (10)C13—C12—H12120.0
C2—N2—C9124.05 (11)C12—C13—C14120.19 (13)
C2—N2—H2118.0C12—C13—H13119.9
C9—N2—H2118.0C14—C13—H13119.9
C4—C3—C8118.57 (12)C9—C14—C13119.96 (13)
C4—C3—C1124.71 (12)C9—C14—H14120.0
C8—C3—C1116.66 (12)C13—C14—H14120.0
C5—C4—C3120.93 (13)F2A—C15—F3B101.9 (12)
C5—C4—Cl1118.00 (11)F2A—C15—F1A100 (2)
C3—C4—Cl1120.97 (10)F3B—C15—F1A111.6 (15)
C6—C5—C4119.47 (13)F2A—C15—F3A104.1 (12)
C6—C5—H5120.3F1A—C15—F3A111.2 (15)
C4—C5—H5120.3F2A—C15—F1B107.3 (18)
C7—C6—C5120.53 (13)F3B—C15—F1B101.8 (14)
C7—C6—H6119.7F3A—C15—F1B101.3 (13)
C5—C6—H6119.7F3B—C15—F2B107.7 (11)
C6—C7—C8119.83 (14)F1A—C15—F2B104 (2)
C6—C7—H7120.1F3A—C15—F2B109.9 (10)
C8—C7—H7120.1F1B—C15—F2B112.2 (17)
C7—C8—C3120.63 (13)F2A—C15—C10117.1 (11)
C7—C8—H8119.7F3B—C15—C10113.8 (6)
C3—C8—H8119.7F1A—C15—C10111.2 (14)
C14—C9—C10120.03 (12)F3A—C15—C10112.3 (5)
C14—C9—N2119.62 (12)F1B—C15—C10113.3 (14)
C10—C9—N2120.25 (12)F2B—C15—C10107.9 (10)
O1—C1—N1—C20.3 (2)C14—C9—C10—C110.06 (19)
C3—C1—N1—C2177.38 (12)N2—C9—C10—C11176.44 (11)
C1—N1—C2—N22.0 (2)C14—C9—C10—C15179.55 (12)
C1—N1—C2—S1177.43 (11)N2—C9—C10—C154.08 (19)
N1—C2—N2—C9176.33 (12)C9—C10—C11—C120.07 (19)
S1—C2—N2—C93.1 (2)C15—C10—C11—C12179.56 (12)
O1—C1—C3—C4128.44 (15)C10—C11—C12—C130.0 (2)
N1—C1—C3—C454.45 (18)C11—C12—C13—C140.0 (2)
O1—C1—C3—C848.70 (19)C10—C9—C14—C130.0 (2)
N1—C1—C3—C8128.41 (13)N2—C9—C14—C13176.40 (12)
C8—C3—C4—C51.8 (2)C12—C13—C14—C90.0 (2)
C1—C3—C4—C5178.93 (13)C9—C10—C15—F2A62.3 (13)
C8—C3—C4—Cl1174.53 (10)C11—C10—C15—F2A118.2 (13)
C1—C3—C4—Cl12.57 (19)C9—C10—C15—F3B56.3 (7)
C3—C4—C5—C60.2 (2)C11—C10—C15—F3B123.2 (7)
Cl1—C4—C5—C6176.29 (11)C9—C10—C15—F1A176.6 (17)
C4—C5—C6—C71.2 (2)C11—C10—C15—F1A3.9 (17)
C5—C6—C7—C80.8 (2)C9—C10—C15—F3A58.0 (5)
C6—C7—C8—C30.9 (2)C11—C10—C15—F3A121.5 (5)
C4—C3—C8—C72.2 (2)C9—C10—C15—F1B172.0 (13)
C1—C3—C8—C7179.51 (13)C11—C10—C15—F1B7.5 (13)
C2—N2—C9—C1471.67 (18)C9—C10—C15—F2B63.2 (11)
C2—N2—C9—C10111.94 (15)C11—C10—C15—F2B117.3 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.583.4032 (16)157
N2—H2···O10.881.912.6179 (16)136
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10ClF3N2OS
Mr358.76
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.705 (3), 8.348 (3), 12.465 (5)
α, β, γ (°)84.92 (1), 72.913 (9), 86.272 (11)
V3)762.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.45 × 0.36 × 0.28
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5989, 3408, 3240
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 1.07
No. of reflections3408
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.21

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.882.583.4032 (16)156.7
N2—H2···O10.881.912.6179 (16)135.9
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

MKR is grateful to The Quaid-i-Azam University, Islamabad, for financial support for a postdoctoral fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRauf, M. K., Ebihara, M., Badshah, A. & Imtiaz-ud-Din (2012). Acta Cryst. E68, o119.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds