supplementary materials


hp2051 scheme

Acta Cryst. (2013). E69, m33    [ doi:10.1107/S1600536812049574 ]

Tris[4-(dimethylamino)pyridinium] hexakis(thiocyanato-[kappa]N)ferrate(III) monohydrate

S. Wöhlert, I. Jess and C. Näther

Abstract top

In the title compound, (C7H11N2)3[Fe(NCS)6]·H2O, the FeIII cation is coordinated by six terminal N-bonded thiocyanate anions into a discrete threefold negatively charged complex. Charge balance is achieved by three protonated 4-(dimethylamino)pyridine cations. The asymmetric unit consists of one FeIII cation, six thiocyanate anions, three 4-(dimethylamino)pyridinium cations and one water molecule, all of them located in general positions.

Comment top

Recently we have reported on the synthesis and characterization of coordination compounds based on transition metal thiocyanates and neutral N-donor co-ligands like e.g. pyridine (Boeckmann & Näther, 2011, 2012). To investigate the influence of the co-ligand we tried to prepare similar compounds with N,N'-dimethylaminopyridine. Therefore, we have reacted iron(II) chloride tetrahydrate with potassium thiocyanate and N,N'-dimethylaminopyridine in water, which lead to the formation of single crystals of the title compound by accident. To identify the product of this reaction a single crystal structure determination was performed.

The crystal structure of the title compound consists of discrete [Fe(NCS)6]3- anions, three N,N'dimethylaminopyridinium cations as well as one water molecule (Fig. 1). In the discrete complexes the iron(III) cations are coordinated by six thiocyanato anions within slightly distorted octahedra with distances in the range of 2.052 (2) Å to 2.079 (2) Å and angles ranging from 87.92 (10) ° to 91.80 (10) ° and from 178.35 (10) ° to 179.11 (10) ° (Tab. 1). The building blocks are connected via intermolecular N—H···S, N—H···O and O—H···S hydrogen bonding, in which the protonated N atom is involved (Tab. 2). These blocks are elongated in the direction of the crystallographic a-axis (Fig. 2).

Related literature top

For general background to our work on the synthesis and characterization of coordination compounds based on transition metal thiocyanates and neutral N-donor co-ligands such as pyridine, see: Boeckmann & Näther (2011, 2012).

Experimental top

FeCl2.4H2O and N,N'-dimethylaminopyridine were obtained from Sigma Aldrich. KNCS are obtained from Alfa Aesar. 0.3 mmol (59.6 mg) FeCl2.4H2O, 0.6 mmol (58.3 mg) KNCS and 0.15 mmol (18.3 mg) dimethylaminopyridine were reacted with 1 mL H2O in a snap cap vial. After one week red colored block-shaped single crystals of the title compound were obtained.

Refinement top

All C-H and N-H H atoms were located in difference map but were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropic with Uiso(H) = 1.2 Ueq(C, N) (1.5 for the methyl H atoms) using a riding model with Caromatic = 0.95 Å, CmethylH = 0.98 Å and N—H = 0.88 Å. The O-H H were located in difference map, their bond lengths were set to ideal values and finally they were refined isotropic with Uiso(H) = 1.5 Ueq(O) using a riding model with O-H = 0.84 Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Crystal structure of the title compound with view along the crystallographic c-axis. Intermolecular hydrogen bonding is shown as dashed lines.
Tris[4-(dimethylamino)pyridinium] hexakis(thiocyanato-κN)ferrate(III) monohydrate top
Crystal data top
(C7H11N2)3[Fe(NCS)6]·H2OZ = 2
Mr = 791.88F(000) = 822
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5780 (7) ÅCell parameters from 13617 reflections
b = 11.7620 (7) Åθ = 2.4–26.0°
c = 16.5450 (11) ŵ = 0.77 mm1
α = 81.260 (7)°T = 180 K
β = 71.550 (7)°Block, red
γ = 62.950 (6)°0.13 × 0.08 × 0.06 mm
V = 1903.4 (2) Å3
Data collection top
Stoe IPDS-1
diffractometer
7356 independent reflections
Radiation source: fine-focus sealed tube4936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
phi scanθmax = 26.0°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1414
Tmin = 0.808, Tmax = 0.947k = 1414
13617 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
7356 reflectionsΔρmax = 0.34 e Å3
431 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (11)
Crystal data top
(C7H11N2)3[Fe(NCS)6]·H2Oγ = 62.950 (6)°
Mr = 791.88V = 1903.4 (2) Å3
Triclinic, P1Z = 2
a = 11.5780 (7) ÅMo Kα radiation
b = 11.7620 (7) ŵ = 0.77 mm1
c = 16.5450 (11) ÅT = 180 K
α = 81.260 (7)°0.13 × 0.08 × 0.06 mm
β = 71.550 (7)°
Data collection top
Stoe IPDS-1
diffractometer
7356 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
4936 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.947Rint = 0.075
13617 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.34 e Å3
S = 0.95Δρmin = 0.50 e Å3
7356 reflectionsAbsolute structure: ?
431 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.98269 (4)0.75134 (4)0.75439 (2)0.01991 (12)
N11.1616 (3)0.7621 (3)0.68821 (16)0.0302 (6)
C11.2706 (3)0.7490 (3)0.65317 (18)0.0254 (6)
S11.42277 (9)0.72966 (11)0.60257 (6)0.0479 (2)
N20.9072 (2)0.8295 (2)0.65142 (16)0.0281 (5)
C20.8775 (3)0.8660 (3)0.58809 (18)0.0226 (6)
S20.83393 (8)0.91910 (8)0.50092 (5)0.0360 (2)
N30.8051 (3)0.7391 (3)0.82393 (16)0.0291 (6)
C30.6995 (3)0.7518 (3)0.86786 (17)0.0250 (6)
S30.55149 (8)0.77201 (10)0.93009 (5)0.0430 (2)
N41.0601 (2)0.5739 (2)0.70384 (16)0.0276 (5)
C41.0898 (3)0.4916 (3)0.65919 (17)0.0223 (6)
S41.12768 (8)0.37586 (7)0.59908 (5)0.02920 (18)
N51.0629 (2)0.6720 (2)0.85664 (16)0.0280 (5)
C51.1078 (3)0.6329 (3)0.91418 (18)0.0243 (6)
S51.17023 (8)0.57453 (8)0.99515 (5)0.0352 (2)
N60.9021 (3)0.9292 (2)0.80598 (15)0.0279 (5)
C60.8648 (3)1.0174 (3)0.84754 (17)0.0233 (6)
S60.81802 (9)1.14057 (7)0.90350 (5)0.0349 (2)
N100.8102 (3)0.6969 (2)1.06431 (16)0.0300 (6)
H100.80800.63931.03740.036*
C110.8352 (3)0.6680 (3)1.14068 (19)0.0287 (6)
H110.85160.58511.16420.034*
C120.8376 (3)0.7546 (3)1.18468 (17)0.0232 (6)
H120.85390.73261.23900.028*
C130.8157 (3)0.8783 (3)1.14994 (16)0.0198 (5)
C140.7897 (3)0.9043 (3)1.06899 (18)0.0289 (6)
H140.77310.98601.04320.035*
C150.7884 (3)0.8131 (3)1.02853 (19)0.0310 (7)
H150.77190.83130.97420.037*
C160.8466 (3)0.9423 (3)1.27260 (18)0.0295 (6)
H16A0.76160.97031.31850.044*
H16B0.89650.98941.27560.044*
H16C0.90120.85071.27890.044*
C170.7972 (4)1.0927 (3)1.1516 (2)0.0345 (7)
H17A0.86791.08231.09770.052*
H17B0.80181.14501.19020.052*
H17C0.70851.13471.14070.052*
N110.8174 (2)0.9670 (2)1.19072 (15)0.0252 (5)
N200.8066 (3)0.2006 (3)0.55337 (16)0.0324 (6)
H200.81130.14240.52310.039*
C210.7879 (3)0.3170 (3)0.51934 (19)0.0337 (7)
H210.78190.33440.46250.040*
C220.7775 (3)0.4096 (3)0.56454 (19)0.0290 (6)
H220.76310.49150.53950.035*
C230.7880 (3)0.3847 (3)0.64942 (17)0.0221 (6)
C240.8093 (3)0.2608 (3)0.68218 (18)0.0247 (6)
H240.81730.23920.73850.030*
C250.8183 (3)0.1721 (3)0.6331 (2)0.0299 (7)
H250.83310.08890.65560.036*
C260.7592 (4)0.6008 (3)0.6599 (2)0.0384 (8)
H26A0.83310.59270.60810.058*
H26B0.75880.65190.70170.058*
H26C0.67290.64290.64580.058*
C270.8000 (3)0.4446 (3)0.78040 (19)0.0327 (7)
H27A0.72850.42350.81920.049*
H27B0.79790.51880.80200.049*
H27C0.88800.37160.77680.049*
N210.7785 (2)0.4741 (2)0.69564 (15)0.0253 (5)
N300.4772 (3)0.3824 (4)0.7836 (2)0.0598 (10)
H300.47220.44770.80670.072*
C310.5092 (4)0.2694 (5)0.8242 (3)0.0573 (12)
H310.52540.26140.87810.069*
C320.5190 (3)0.1663 (4)0.7905 (2)0.0459 (9)
H320.54460.08660.81990.055*
C330.4912 (3)0.1771 (3)0.7116 (2)0.0328 (7)
C340.4594 (3)0.2978 (3)0.6703 (2)0.0399 (8)
H340.44280.30950.61620.048*
C350.4524 (4)0.3966 (4)0.7073 (3)0.0530 (10)
H350.42980.47730.67920.064*
C360.4696 (4)0.0904 (4)0.5952 (2)0.0456 (9)
H36A0.54260.10230.55050.068*
H36B0.38320.16380.59540.068*
H36C0.46650.01240.58420.068*
C370.5321 (4)0.0459 (4)0.7194 (3)0.0544 (10)
H37A0.47720.03700.77900.082*
H37B0.62790.08370.71720.082*
H37C0.51630.10140.68980.082*
N310.4946 (3)0.0793 (3)0.67822 (18)0.0371 (6)
O10.4555 (3)0.5701 (4)0.8757 (3)0.0986 (15)
H1O10.49270.61040.88660.148*
H2O10.40040.56490.92180.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0247 (2)0.0191 (2)0.0198 (2)0.01218 (16)0.00614 (15)0.00240 (14)
N10.0341 (14)0.0365 (15)0.0283 (13)0.0208 (12)0.0074 (11)0.0083 (11)
C10.0323 (16)0.0266 (15)0.0241 (14)0.0169 (12)0.0104 (12)0.0002 (11)
S10.0299 (4)0.0642 (6)0.0518 (5)0.0269 (4)0.0040 (4)0.0013 (5)
N20.0338 (13)0.0265 (13)0.0273 (13)0.0148 (11)0.0110 (11)0.0017 (10)
C20.0217 (13)0.0208 (14)0.0264 (15)0.0090 (11)0.0067 (11)0.0044 (11)
S20.0438 (4)0.0392 (5)0.0268 (4)0.0141 (4)0.0178 (3)0.0017 (3)
N30.0332 (13)0.0349 (15)0.0273 (13)0.0215 (11)0.0065 (11)0.0043 (11)
C30.0336 (16)0.0305 (15)0.0203 (13)0.0187 (13)0.0124 (12)0.0001 (11)
S30.0322 (4)0.0695 (6)0.0321 (4)0.0292 (4)0.0023 (3)0.0044 (4)
N40.0339 (13)0.0223 (12)0.0309 (13)0.0154 (11)0.0085 (10)0.0027 (11)
C40.0268 (13)0.0198 (14)0.0214 (13)0.0117 (11)0.0074 (11)0.0029 (11)
S40.0450 (4)0.0209 (4)0.0222 (3)0.0143 (3)0.0089 (3)0.0030 (3)
N50.0342 (13)0.0249 (13)0.0293 (13)0.0135 (11)0.0136 (11)0.0004 (10)
C50.0279 (14)0.0224 (14)0.0271 (15)0.0139 (12)0.0066 (12)0.0058 (12)
S50.0428 (4)0.0408 (5)0.0301 (4)0.0193 (4)0.0193 (3)0.0007 (3)
N60.0359 (13)0.0257 (13)0.0258 (12)0.0173 (11)0.0066 (10)0.0022 (10)
C60.0322 (14)0.0204 (14)0.0190 (13)0.0138 (12)0.0069 (11)0.0020 (11)
S60.0600 (5)0.0223 (4)0.0203 (4)0.0178 (4)0.0078 (3)0.0022 (3)
N100.0403 (14)0.0309 (14)0.0256 (13)0.0194 (11)0.0085 (10)0.0081 (11)
C110.0323 (15)0.0252 (15)0.0304 (15)0.0148 (12)0.0068 (12)0.0013 (12)
C120.0280 (14)0.0235 (14)0.0202 (13)0.0132 (11)0.0074 (11)0.0019 (11)
C130.0214 (12)0.0244 (14)0.0160 (12)0.0131 (11)0.0026 (10)0.0015 (10)
C140.0411 (16)0.0313 (16)0.0210 (14)0.0206 (14)0.0116 (12)0.0031 (12)
C150.0397 (16)0.0410 (18)0.0215 (14)0.0240 (14)0.0113 (12)0.0018 (13)
C160.0463 (17)0.0311 (16)0.0231 (14)0.0233 (14)0.0173 (13)0.0042 (12)
C170.0528 (19)0.0267 (16)0.0351 (17)0.0228 (15)0.0206 (15)0.0050 (13)
N110.0372 (13)0.0233 (12)0.0227 (12)0.0169 (11)0.0136 (10)0.0027 (10)
N200.0379 (14)0.0362 (15)0.0299 (13)0.0198 (12)0.0073 (11)0.0119 (11)
C210.0413 (17)0.046 (2)0.0214 (14)0.0245 (15)0.0095 (12)0.0028 (13)
C220.0389 (16)0.0320 (16)0.0243 (14)0.0217 (14)0.0130 (12)0.0068 (12)
C230.0216 (13)0.0240 (14)0.0226 (13)0.0119 (11)0.0049 (10)0.0020 (11)
C240.0274 (14)0.0264 (15)0.0215 (13)0.0136 (12)0.0055 (11)0.0001 (11)
C250.0332 (15)0.0250 (15)0.0342 (16)0.0156 (13)0.0060 (12)0.0051 (13)
C260.056 (2)0.0208 (15)0.050 (2)0.0160 (15)0.0328 (17)0.0054 (14)
C270.0446 (18)0.0310 (16)0.0286 (15)0.0173 (14)0.0153 (13)0.0037 (13)
N210.0325 (12)0.0214 (12)0.0271 (12)0.0126 (10)0.0135 (10)0.0003 (10)
N300.0410 (18)0.078 (3)0.065 (2)0.0339 (18)0.0046 (16)0.029 (2)
C310.039 (2)0.098 (4)0.037 (2)0.035 (2)0.0031 (16)0.005 (2)
C320.0353 (17)0.067 (3)0.0351 (18)0.0254 (18)0.0102 (14)0.0108 (17)
C330.0196 (13)0.0413 (18)0.0308 (16)0.0127 (13)0.0040 (11)0.0096 (13)
C340.0363 (17)0.0393 (19)0.0416 (19)0.0166 (15)0.0113 (14)0.0073 (15)
C350.0395 (19)0.047 (2)0.068 (3)0.0205 (18)0.0082 (18)0.002 (2)
C360.0387 (18)0.050 (2)0.043 (2)0.0155 (17)0.0080 (15)0.0057 (17)
C370.043 (2)0.037 (2)0.069 (3)0.0123 (17)0.0146 (18)0.0185 (19)
N310.0301 (13)0.0305 (14)0.0393 (15)0.0082 (11)0.0050 (11)0.0044 (12)
O10.066 (2)0.123 (3)0.122 (3)0.065 (2)0.020 (2)0.064 (3)
Geometric parameters (Å, º) top
Fe1—N42.052 (2)N20—H200.8800
Fe1—N62.059 (2)C21—C221.353 (4)
Fe1—N22.061 (3)C21—H210.9500
Fe1—N12.065 (3)C22—C231.422 (4)
Fe1—N32.072 (3)C22—H220.9500
Fe1—N52.079 (2)C23—N211.338 (4)
N1—C11.157 (4)C23—C241.413 (4)
C1—S11.618 (3)C24—C251.365 (4)
N2—C21.165 (4)C24—H240.9500
C2—S21.620 (3)C25—H250.9500
N3—C31.162 (4)C26—N211.461 (4)
C3—S31.625 (3)C26—H26A0.9800
N4—C41.164 (4)C26—H26B0.9800
C4—S41.621 (3)C26—H26C0.9800
N5—C51.162 (4)C27—N211.464 (4)
C5—S51.634 (3)C27—H27A0.9800
N6—C61.165 (4)C27—H27B0.9800
C6—S61.620 (3)C27—H27C0.9800
N10—C111.345 (4)N30—C311.339 (6)
N10—C151.347 (4)N30—C351.351 (6)
N10—H100.8800N30—H300.8800
C11—C121.353 (4)C31—C321.355 (7)
C11—H110.9500C31—H310.9500
C12—C131.419 (4)C32—C331.415 (5)
C12—H120.9500C32—H320.9500
C13—N111.336 (4)C33—N311.330 (5)
C13—C141.423 (4)C33—C341.418 (5)
C14—C151.356 (4)C34—C351.354 (6)
C14—H140.9500C34—H340.9500
C15—H150.9500C35—H350.9500
C16—N111.454 (4)C36—N311.467 (5)
C16—H16A0.9800C36—H36A0.9800
C16—H16B0.9800C36—H36B0.9800
C16—H16C0.9800C36—H36C0.9800
C17—N111.466 (4)C37—N311.457 (5)
C17—H17A0.9800C37—H37A0.9800
C17—H17B0.9800C37—H37B0.9800
C17—H17C0.9800C37—H37C0.9800
N20—C251.344 (4)O1—H1O10.8400
N20—C211.346 (4)O1—H2O10.8401
N4—Fe1—N6179.11 (11)N20—C21—H21119.3
N4—Fe1—N288.68 (10)C22—C21—H21119.3
N6—Fe1—N291.24 (10)C21—C22—C23120.1 (3)
N4—Fe1—N189.09 (10)C21—C22—H22119.9
N6—Fe1—N191.80 (10)C23—C22—H22119.9
N2—Fe1—N190.15 (10)N21—C23—C24121.8 (3)
N4—Fe1—N391.19 (10)N21—C23—C22121.6 (3)
N6—Fe1—N387.92 (10)C24—C23—C22116.6 (3)
N2—Fe1—N391.48 (10)C25—C24—C23120.1 (3)
N1—Fe1—N3178.35 (10)C25—C24—H24119.9
N4—Fe1—N591.08 (10)C23—C24—H24119.9
N6—Fe1—N589.02 (10)N20—C25—C24121.1 (3)
N2—Fe1—N5178.77 (10)N20—C25—H25119.5
N1—Fe1—N588.64 (10)C24—C25—H25119.5
N3—Fe1—N589.73 (10)N21—C26—H26A109.5
C1—N1—Fe1170.0 (3)N21—C26—H26B109.5
N1—C1—S1178.9 (3)H26A—C26—H26B109.5
C2—N2—Fe1173.1 (2)N21—C26—H26C109.5
N2—C2—S2178.9 (3)H26A—C26—H26C109.5
C3—N3—Fe1168.7 (2)H26B—C26—H26C109.5
N3—C3—S3178.9 (3)N21—C27—H27A109.5
C4—N4—Fe1162.8 (2)N21—C27—H27B109.5
N4—C4—S4178.3 (3)H27A—C27—H27B109.5
C5—N5—Fe1176.9 (2)N21—C27—H27C109.5
N5—C5—S5178.4 (3)H27A—C27—H27C109.5
C6—N6—Fe1167.6 (2)H27B—C27—H27C109.5
N6—C6—S6177.9 (3)C23—N21—C26120.9 (2)
C11—N10—C15120.8 (2)C23—N21—C27121.1 (2)
C11—N10—H10119.6C26—N21—C27117.7 (2)
C15—N10—H10119.6C31—N30—C35120.3 (4)
N10—C11—C12121.4 (3)C31—N30—H30119.9
N10—C11—H11119.3C35—N30—H30119.9
C12—C11—H11119.3N30—C31—C32121.8 (4)
C11—C12—C13120.2 (3)N30—C31—H31119.1
C11—C12—H12119.9C32—C31—H31119.1
C13—C12—H12119.9C31—C32—C33120.1 (4)
N11—C13—C12122.5 (2)C31—C32—H32120.0
N11—C13—C14121.2 (3)C33—C32—H32120.0
C12—C13—C14116.3 (2)N31—C33—C32121.8 (3)
C15—C14—C13120.4 (3)N31—C33—C34121.9 (3)
C15—C14—H14119.8C32—C33—C34116.3 (3)
C13—C14—H14119.8C35—C34—C33120.4 (4)
N10—C15—C14120.9 (3)C35—C34—H34119.8
N10—C15—H15119.5C33—C34—H34119.8
C14—C15—H15119.5N30—C35—C34121.1 (4)
N11—C16—H16A109.5N30—C35—H35119.4
N11—C16—H16B109.5C34—C35—H35119.4
H16A—C16—H16B109.5N31—C36—H36A109.5
N11—C16—H16C109.5N31—C36—H36B109.5
H16A—C16—H16C109.5H36A—C36—H36B109.5
H16B—C16—H16C109.5N31—C36—H36C109.5
N11—C17—H17A109.5H36A—C36—H36C109.5
N11—C17—H17B109.5H36B—C36—H36C109.5
H17A—C17—H17B109.5N31—C37—H37A109.5
N11—C17—H17C109.5N31—C37—H37B109.5
H17A—C17—H17C109.5H37A—C37—H37B109.5
H17B—C17—H17C109.5N31—C37—H37C109.5
C13—N11—C16122.4 (2)H37A—C37—H37C109.5
C13—N11—C17120.6 (2)H37B—C37—H37C109.5
C16—N11—C17116.9 (2)C33—N31—C37121.7 (3)
C25—N20—C21120.7 (3)C33—N31—C36121.3 (3)
C25—N20—H20119.6C37—N31—C36116.8 (3)
C21—N20—H20119.6H1O1—O1—H2O1105.9
N20—C21—C22121.3 (3)
Acknowledgements top

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (project 720/3-1). We thank Professor Dr Wolfgang Bensch for access to his experimental facility.

references
References top

Boeckmann, J. & Näther, C. (2011). Dalton Trans. 39, 11019–11026.

Boeckmann, J. & Näther, C. (2012). Polyhedron, 31 587–595.

Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.