supplementary materials


hy2608 scheme

Acta Cryst. (2013). E69, m49    [ doi:10.1107/S1600536812050106 ]

Dibromido(2,9-dimethyl-1,10-phenanthroline-[kappa]2N,N')(dimethyl sulfoxide-[kappa]O)cadmium

K. Moghanlou

Abstract top

In the molecule of the title compound, [CdBr2(C14H12N2)(C2H6OS)], the CdII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, one O atom from a dimethyl sulfoxide ligand and two Br atoms. In the crystal, [pi]-[pi] contacts between the pyridine and benzene rings [centroid-centroid distances = 3.710 (5), 3.711 (6) and 3.627 (5) Å] stabilize the structure.

Comment top

2,9-Dimethyl-1,10-phenanthroline (Me2phen) is a good bidentate ligand, and numerous complexes with Me2phen have been prepared, such as that of mercury (Alizadeh et al., 2009), iron (Armentano et al., 2006), copper (Lemoine et al., 2003), nickel (Ding et al., 2006), gold (Robinson & Sinn, 1975), platinum (Fanizzi et al., 1991) and cobalt (Akbarzadeh Torbati et al., 2010). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the CdII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, one O atom from a dimethyl sulfoxide ligand and two Br atoms (Table 1). In the crystal, ππ contacts between the pyridine and benzene rings, Cg2···Cg3i, Cg2···Cg4i and Cg3···Cg4ii [symmetry codes: (i) -x, 1-y, 2-z; (ii) 1-x, 1-y, 2-z, Cg2, Cg3 and Cg4 are the centroids of the N1/C2–C5/C14, N2/C8–C11/C13 and C5–C8/C13/C14 rings, respectively], with centroid–centroid distances of 3.710 (5), 3.711 (6) and 3.627 (5) Å, stabilize the structure (Fig. 2).

Related literature top

For related structures, see: Akbarzadeh Torbati et al. (2010); Alizadeh et al. (2009); Armentano et al. (2006); Ding et al. (2006); Fanizzi et al. (1991); Lemoine et al. (2003); Robinson & Sinn (1975).

Experimental top

For the preparation of the title compound, a solution of 2,9-dimethyl-1,10-phenanthroline (0.42 g, 2.00 mmol) in methanol (15 ml) was added to a solution of CdBr2.4H2O, (0.69 g, 2.00 mmol) in methanol (15 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained by methanol diffusion into a colorless solution in DMSO after five days (yield: 0.85 g, 76.1%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram for the title compound.
Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2N,N')(dimethyl sulfoxide-κO)cadmium top
Crystal data top
[CdBr2(C14H12N2)(C2H6OS)]F(000) = 1080
Mr = 558.60Dx = 1.936 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15831 reflections
a = 8.1468 (9) Åθ = 1.9–26.0°
b = 17.3814 (15) ŵ = 5.42 mm1
c = 13.6369 (13) ÅT = 298 K
β = 95.724 (9)°Block, colorless
V = 1921.4 (3) Å30.42 × 0.22 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3766 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.222, Tmax = 0.325k = 2121
15831 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.062P)2]
where P = (Fo2 + 2Fc2)/3
3766 reflections(Δ/σ)max = 0.004
208 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 1.06 e Å3
Crystal data top
[CdBr2(C14H12N2)(C2H6OS)]V = 1921.4 (3) Å3
Mr = 558.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1468 (9) ŵ = 5.42 mm1
b = 17.3814 (15) ÅT = 298 K
c = 13.6369 (13) Å0.42 × 0.22 × 0.17 mm
β = 95.724 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
3766 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2196 reflections with I > 2σ(I)
Tmin = 0.222, Tmax = 0.325Rint = 0.108
15831 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.127Δρmax = 1.02 e Å3
S = 0.94Δρmin = 1.06 e Å3
3766 reflectionsAbsolute structure: ?
208 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0593 (14)0.2673 (6)0.8844 (10)0.096 (4)
H1A0.02190.24630.84560.115*
H1B0.14210.29380.84230.115*
H1C0.10970.22630.91800.115*
C20.0215 (11)0.3221 (5)0.9583 (8)0.064 (3)
C30.0114 (13)0.3105 (7)1.0594 (10)0.085 (4)
H30.04310.26771.08100.102*
C40.0811 (14)0.3619 (8)1.1251 (9)0.085 (3)
H40.07480.35451.19210.102*
C50.1625 (11)0.4262 (6)1.0924 (7)0.062 (2)
C60.2357 (14)0.4818 (7)1.1589 (7)0.075 (3)
H60.23070.47591.22630.090*
C70.3105 (13)0.5414 (7)1.1252 (7)0.076 (3)
H70.35840.57731.16990.091*
C80.3216 (9)0.5535 (5)1.0220 (6)0.051 (2)
C90.3992 (11)0.6171 (6)0.9837 (8)0.068 (3)
H90.45160.65321.02640.082*
C100.3987 (11)0.6265 (5)0.8869 (9)0.070 (3)
H100.44900.66920.86170.084*
C110.3206 (11)0.5706 (5)0.8227 (7)0.059 (2)
C120.3144 (15)0.5823 (6)0.7120 (8)0.089 (4)
H12A0.20160.58310.68390.107*
H12B0.37170.54100.68340.107*
H12C0.36600.63040.69870.107*
C130.2514 (9)0.4992 (4)0.9535 (6)0.0415 (18)
C140.1699 (9)0.4338 (5)0.9909 (6)0.048 (2)
C150.5347 (12)0.3392 (7)0.5318 (8)0.091 (4)
H15A0.59420.31880.59040.110*
H15B0.58880.38480.51180.110*
H15C0.53180.30150.48010.110*
C160.2687 (17)0.4141 (8)0.4484 (8)0.105 (4)
H16A0.35150.45130.43650.126*
H16B0.16700.44000.45680.126*
H16C0.25240.37960.39330.126*
N10.0990 (8)0.3812 (4)0.9263 (5)0.0505 (17)
N20.2556 (7)0.5071 (3)0.8554 (4)0.0434 (15)
O10.3558 (8)0.4221 (4)0.6386 (4)0.0707 (17)
Cd10.18778 (7)0.39536 (3)0.76580 (4)0.04942 (19)
Br10.07113 (13)0.39818 (7)0.64445 (8)0.0862 (4)
Br20.36845 (12)0.27030 (5)0.79524 (7)0.0636 (3)
S10.3331 (3)0.36172 (15)0.55550 (18)0.0659 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.072 (7)0.067 (7)0.154 (12)0.016 (6)0.041 (7)0.003 (7)
C20.055 (5)0.044 (5)0.093 (8)0.007 (4)0.017 (5)0.013 (5)
C30.070 (7)0.075 (8)0.118 (10)0.024 (6)0.052 (7)0.047 (7)
C40.086 (8)0.104 (9)0.068 (7)0.038 (7)0.025 (6)0.032 (7)
C50.062 (6)0.075 (6)0.052 (6)0.029 (5)0.021 (5)0.019 (5)
C60.091 (8)0.088 (8)0.047 (6)0.038 (7)0.011 (5)0.014 (6)
C70.081 (7)0.093 (9)0.050 (6)0.038 (6)0.010 (5)0.025 (5)
C80.042 (4)0.049 (5)0.061 (6)0.010 (4)0.005 (4)0.013 (4)
C90.055 (5)0.069 (7)0.080 (7)0.010 (5)0.004 (5)0.028 (5)
C100.057 (6)0.051 (6)0.106 (9)0.001 (4)0.025 (6)0.021 (5)
C110.064 (6)0.043 (5)0.076 (6)0.007 (4)0.033 (5)0.007 (4)
C120.140 (10)0.049 (6)0.087 (8)0.008 (6)0.050 (8)0.014 (5)
C130.035 (4)0.042 (5)0.048 (5)0.009 (3)0.004 (3)0.006 (3)
C140.037 (4)0.055 (5)0.052 (5)0.023 (4)0.011 (4)0.002 (4)
C150.072 (7)0.109 (10)0.091 (8)0.012 (6)0.003 (6)0.037 (7)
C160.123 (10)0.116 (11)0.073 (8)0.033 (8)0.006 (7)0.006 (7)
N10.040 (4)0.050 (4)0.062 (5)0.007 (3)0.011 (3)0.008 (3)
N20.049 (4)0.041 (4)0.043 (4)0.001 (3)0.018 (3)0.004 (3)
O10.090 (5)0.066 (4)0.058 (4)0.004 (3)0.016 (3)0.011 (3)
Cd10.0506 (3)0.0497 (3)0.0470 (3)0.0041 (3)0.0002 (2)0.0050 (3)
Br10.0643 (6)0.0998 (9)0.0882 (8)0.0266 (6)0.0238 (5)0.0290 (6)
Br20.0725 (6)0.0576 (6)0.0593 (6)0.0198 (5)0.0008 (4)0.0025 (4)
S10.0765 (16)0.0627 (15)0.0587 (15)0.0006 (12)0.0080 (12)0.0057 (11)
Geometric parameters (Å, º) top
C1—C21.491 (15)C11—N21.321 (10)
C1—H1A0.9600C11—C121.519 (13)
C1—H1B0.9600C12—H12A0.9600
C1—H1C0.9600C12—H12B0.9600
C2—N11.304 (10)C12—H12C0.9600
C2—C31.404 (14)C13—N21.349 (9)
C3—C41.349 (16)C13—C141.435 (11)
C3—H30.9300C14—N11.358 (11)
C4—C51.395 (15)C15—S11.750 (10)
C4—H40.9300C15—H15A0.9600
C5—C141.398 (11)C15—H15B0.9600
C5—C61.415 (15)C15—H15C0.9600
C6—C71.309 (14)C16—S11.757 (11)
C6—H60.9300C16—H16A0.9600
C7—C81.435 (13)C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C8—C91.399 (13)Cd1—N12.386 (6)
C8—C131.409 (11)Cd1—N22.331 (6)
C9—C101.330 (14)O1—S11.542 (6)
C9—H90.9300Cd1—O12.361 (6)
C10—C111.416 (13)Cd1—Br12.5483 (11)
C10—H100.9300Cd1—Br22.6335 (11)
C2—C1—H1A109.5H12A—C12—H12C109.5
C2—C1—H1B109.5H12B—C12—H12C109.5
H1A—C1—H1B109.5N2—C13—C8122.7 (7)
C2—C1—H1C109.5N2—C13—C14119.4 (7)
H1A—C1—H1C109.5C8—C13—C14117.8 (7)
H1B—C1—H1C109.5N1—C14—C5121.4 (8)
N1—C2—C3121.3 (10)N1—C14—C13119.0 (7)
N1—C2—C1118.3 (9)C5—C14—C13119.7 (8)
C3—C2—C1120.4 (10)S1—C15—H15A109.5
C4—C3—C2119.7 (10)S1—C15—H15B109.5
C4—C3—H3120.2H15A—C15—H15B109.5
C2—C3—H3120.2S1—C15—H15C109.5
C3—C4—C5120.0 (10)H15A—C15—H15C109.5
C3—C4—H4120.0H15B—C15—H15C109.5
C5—C4—H4120.0S1—C16—H16A109.5
C4—C5—C14117.5 (10)S1—C16—H16B109.5
C4—C5—C6121.7 (10)H16A—C16—H16B109.5
C14—C5—C6120.8 (9)S1—C16—H16C109.5
C7—C6—C5119.8 (9)H16A—C16—H16C109.5
C7—C6—H6120.1H16B—C16—H16C109.5
C5—C6—H6120.1C2—N1—C14120.2 (8)
C6—C7—C8122.5 (10)C2—N1—Cd1126.1 (6)
C6—C7—H7118.7C14—N1—Cd1112.2 (5)
C8—C7—H7118.7C11—N2—C13118.0 (7)
C9—C8—C13116.8 (8)C11—N2—Cd1127.0 (5)
C9—C8—C7123.8 (9)C13—N2—Cd1114.0 (5)
C13—C8—C7119.4 (9)S1—O1—Cd1111.7 (3)
C10—C9—C8120.7 (9)N2—Cd1—O195.5 (2)
C10—C9—H9119.6N2—Cd1—N171.5 (2)
C8—C9—H9119.6O1—Cd1—N1161.0 (2)
C9—C10—C11119.0 (9)N2—Cd1—Br1117.50 (16)
C9—C10—H10120.5O1—Cd1—Br191.26 (17)
C11—C10—H10120.5N1—Cd1—Br1106.91 (16)
N2—C11—C10122.4 (9)N2—Cd1—Br2120.54 (16)
N2—C11—C12118.2 (8)O1—Cd1—Br285.32 (17)
C10—C11—C12119.3 (9)N1—Cd1—Br289.49 (15)
C11—C12—H12A109.5Br1—Cd1—Br2121.92 (4)
C11—C12—H12B109.5O1—S1—C15104.0 (5)
H12A—C12—H12B109.5O1—S1—C16105.2 (5)
C11—C12—H12C109.5C15—S1—C1699.8 (6)
N1—C2—C3—C40.9 (14)C5—C14—N1—Cd1166.5 (6)
C1—C2—C3—C4178.1 (10)C13—C14—N1—Cd114.6 (8)
C2—C3—C4—C50.1 (15)C10—C11—N2—C136.0 (11)
C3—C4—C5—C140.8 (14)C12—C11—N2—C13175.7 (8)
C3—C4—C5—C6179.4 (9)C10—C11—N2—Cd1162.1 (6)
C4—C5—C6—C7179.8 (9)C12—C11—N2—Cd116.2 (11)
C14—C5—C6—C70.4 (14)C8—C13—N2—C113.7 (10)
C5—C6—C7—C80.2 (15)C14—C13—N2—C11175.0 (7)
C6—C7—C8—C9179.3 (9)C8—C13—N2—Cd1165.9 (5)
C6—C7—C8—C130.7 (13)C14—C13—N2—Cd115.3 (8)
C13—C8—C9—C103.0 (12)C11—N2—Cd1—O119.0 (7)
C7—C8—C9—C10177.0 (8)C13—N2—Cd1—O1149.5 (5)
C8—C9—C10—C111.0 (13)C11—N2—Cd1—N1175.2 (7)
C9—C10—C11—N23.7 (13)C13—N2—Cd1—N116.3 (5)
C9—C10—C11—C12177.9 (9)C11—N2—Cd1—Br175.4 (7)
C9—C8—C13—N20.6 (11)C13—N2—Cd1—Br1116.1 (5)
C7—C8—C13—N2179.4 (7)C11—N2—Cd1—Br2106.8 (7)
C9—C8—C13—C14179.5 (7)C13—N2—Cd1—Br261.7 (5)
C7—C8—C13—C140.5 (10)S1—O1—Cd1—N2175.0 (4)
C4—C5—C14—N10.7 (11)S1—O1—Cd1—N1139.3 (6)
C6—C5—C14—N1179.5 (8)S1—O1—Cd1—Br157.2 (4)
C4—C5—C14—C13179.6 (8)S1—O1—Cd1—Br264.7 (4)
C6—C5—C14—C130.6 (11)C2—N1—Cd1—N2178.3 (7)
N2—C13—C14—N10.2 (10)C14—N1—Cd1—N215.9 (5)
C8—C13—C14—N1179.0 (6)C2—N1—Cd1—O1133.1 (8)
N2—C13—C14—C5178.8 (7)C14—N1—Cd1—O132.7 (10)
C8—C13—C14—C50.1 (10)C2—N1—Cd1—Br164.2 (7)
C3—C2—N1—C141.0 (12)C14—N1—Cd1—Br1130.0 (5)
C1—C2—N1—C14177.9 (8)C2—N1—Cd1—Br259.1 (7)
C3—C2—N1—Cd1163.7 (6)C14—N1—Cd1—Br2106.7 (5)
C1—C2—N1—Cd117.3 (11)Cd1—O1—S1—C15134.0 (5)
C5—C14—N1—C20.2 (11)Cd1—O1—S1—C16121.6 (5)
C13—C14—N1—C2178.7 (7)
Selected bond lengths (Å) top
Cd1—N12.386 (6)Cd1—Br12.5483 (11)
Cd1—N22.331 (6)Cd1—Br22.6335 (11)
Cd1—O12.361 (6)
Acknowledgements top

The author thanks the Graduate Study Councils of the Islamic Azad University, North Tehran Branch, for financial support.

references
References top

Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010). Acta Cryst. E66, m1284.

Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484.

Armentano, D., Munno, G. D., Guerra, F., Julve, M. & Lloret, F. (2006). Inorg. Chem. 45, 4626–4636.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, C.-F., Miao, Y.-F., Tian, B.-Q., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m1062–m1063.

Fanizzi, F. P., Intini, F. P., Maresca, L., Natile, G., Lanfranchi, M. & Tiripicchio, A. (1991). J. Chem. Soc. Dalton Trans. pp. 1007–1015.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Lemoine, P., Viossat, B. & Daran, J.-C. (2003). Acta Cryst. E59, m17–m19.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Robinson, W. T. & Sinn, E. (1975). J. Chem. Soc. Dalton Trans. pp. 726–731.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.