metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[4-(1H-imidazol-2-yl)pyridine-κN]bis­­(nitrato-κO)cadmium

aHubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
*Correspondence e-mail: jincm1999@yahoo.com

(Received 2 December 2012; accepted 14 December 2012; online 22 December 2012)

In the title compound, [Cd(NO3)2(C8H7N3)2(H2O)2], the CdII cation is situated on an inversion center and is coordinated by the O atoms of two nitrate anions, by the N atoms of two 4-(imidazol-2-yl)pyridine ligands and by two water O atoms in a slightly distorted N2O4 octa­hedral geometry. The dihedral angle between the imidazole and pyridine rings is 1.6 (2)°. In the crystal, mol­ecules are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For background to compounds with metal-organic framework (MOF) structures, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460-1494.]); Burrows (2011[Burrows, A. D. (2011). CrystEngComm, 13, 3623-3642.]); Jin et al. (2010[Jin, C.-M., Zhu, Z., Chen, Z.-F., Hu, Y.-J. & Meng, X.-G. (2010). Cryst. Growth Des. 10, 2054-2056.]); Tanabe & Cohen (2011[Tanabe, K. K. & Cohen, S. M. (2011). Chem. Soc. Rev. 40, 498-519.]). For the use of N,N′-type ligands in MOFs, see: Custelcean (2010[Custelcean, R. (2010). Chem. Soc. Rev. 39, 3675-3685.]); Pschirer et al. (2002[Pschirer, N. G., Curtin, D. M., Smith, M. D., Bunz, U. H. F. & Zur Loye, H.-C. (2002). Angew. Chem. Int. Ed. Engl. 41, 583-585.]). For the structural analysis of an imidazole closely related to the ligand, see: Voss et al. (2008[Voss, M. E., Beer, C. M., Mitchell, S. A., Blomgren, P. A. & Zhichkin, P. E. (2008). Tetrahedron, 64, 645-651.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO3)2(C8H7N3)2(H2O)2]

  • Mr = 562.78

  • Monoclinic, P 21 /n

  • a = 7.2508 (7) Å

  • b = 12.1372 (12) Å

  • c = 12.3509 (12) Å

  • β = 102.278 (2)°

  • V = 1062.07 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.899

  • 6543 measured reflections

  • 2462 independent reflections

  • 2272 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.10

  • 2462 reflections

  • 157 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.86 2.10 2.923 (3) 160
O4—H4B⋯N2ii 0.82 (1) 1.98 (1) 2.796 (3) 174 (4)
O4—H4A⋯O2iii 0.81 (1) 2.14 (1) 2.946 (4) 174 (4)
O4—H4A⋯O3iii 0.81 (1) 2.65 (3) 3.197 (3) 126 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of functional metal-organic frameworks is of great interest due to their intriguing network topologies and their potential applications as microporous, magnetism, catalysis, nonlinear optics, molecular separation, toxic materials adsorption and molecular sensors (Batten & Robson, 1998; Burrows, 2011; Jin et al., 2010; Tanabe & Cohen, 2011). The molecular geometry and flexibility of multidentate ligands play key roles in the field of supramolecular self-assemble on metal-organic frameworks. For example, 4, 4'-bipyridine, 1, 2- bis(4-pyridyl)ethane and trans-bis(4-pyridyl)ethene as ligands can form a lot of coordination polymers with different structure features (Custelcean, 2010; Pschirer et al., 2002). Our interest is to exploit the coordination chemistry of 2-pyridinyl-imidazole and its derivatives together with their potential application in material science.

In the report, the mono-nuclear cadmium(II) complex, [Cd(C8H7N3)2(NO3)2(H2O)2], was obtained via the reaction of 4-(1H-imidazol-2-yl)-pyridine and cadmium(II) nitrate. Single crystal X-ray diffraction analysis reveals that the cadmium(II) atom is six-coordinated in a slightly distorted octahedral geometry by two pyridine nitrogen atoms, two nitrate anions oxygen atoms and two aqua oxygen atoms forming N2O4 donor set (Figure 1). The cadmium atom is situated on an inversion center. Bond distances of Cd(1)—N(1), Cd(1)—O(1) and Cd(1)—O(4) are 2.276 (2), 2.503 (3) and 2.310 (2) Å, respectivity. The dihedral angle between the imidazole and pyridine rings is 1.6 (2)°. In the crystal, molecules are linked by N—H······O, O—H······N and O—H······O hydrogen bonds, forming a three-dimensional network (Figure 2).

Related literature top

For background to metal-organic framework structures (MOFs), see: Batten & Robson (1998); Burrows (2011); Jin et al. (2010); Tanabe & Cohen (2011). For the use of N,N'-type ligands in MOFs, see: Custelcean (2010); Pschirer et al. (2002). For the structural analysis of an imidazole closely related to the ligand, see: Voss et al. (2008).

Experimental top

The organic ligand 4-(1H-imidazol-2-yl)-pyridine was prepared according to the previously reported literature methods (Voss et al., 2008). Cd(NO3)2 (24 mg, 0.1 mmol) dissolved in 5 ml ethanol and a solution of 4-(1H-imidazol-2-yl)-pyridine (29 mg, 0.2 mmol) in another 5 ml of ethanol were mixed, refluxed for 5 h and filtered. The filtrate was left at room temperature. Suitable single crystals for a X-ray diffraction study were obtained after a few days (yield: 73% based on Cd(II) salts).

Refinement top

H atoms were positioned geometrically at distances of 0.93 (CH), and 0.86 (NH) from the respective parent atoms, a riding model was used during the refinement process. Uiso values were constrained to be 1.2 times Ueq of the carrier atom.

Structure description top

The construction of functional metal-organic frameworks is of great interest due to their intriguing network topologies and their potential applications as microporous, magnetism, catalysis, nonlinear optics, molecular separation, toxic materials adsorption and molecular sensors (Batten & Robson, 1998; Burrows, 2011; Jin et al., 2010; Tanabe & Cohen, 2011). The molecular geometry and flexibility of multidentate ligands play key roles in the field of supramolecular self-assemble on metal-organic frameworks. For example, 4, 4'-bipyridine, 1, 2- bis(4-pyridyl)ethane and trans-bis(4-pyridyl)ethene as ligands can form a lot of coordination polymers with different structure features (Custelcean, 2010; Pschirer et al., 2002). Our interest is to exploit the coordination chemistry of 2-pyridinyl-imidazole and its derivatives together with their potential application in material science.

In the report, the mono-nuclear cadmium(II) complex, [Cd(C8H7N3)2(NO3)2(H2O)2], was obtained via the reaction of 4-(1H-imidazol-2-yl)-pyridine and cadmium(II) nitrate. Single crystal X-ray diffraction analysis reveals that the cadmium(II) atom is six-coordinated in a slightly distorted octahedral geometry by two pyridine nitrogen atoms, two nitrate anions oxygen atoms and two aqua oxygen atoms forming N2O4 donor set (Figure 1). The cadmium atom is situated on an inversion center. Bond distances of Cd(1)—N(1), Cd(1)—O(1) and Cd(1)—O(4) are 2.276 (2), 2.503 (3) and 2.310 (2) Å, respectivity. The dihedral angle between the imidazole and pyridine rings is 1.6 (2)°. In the crystal, molecules are linked by N—H······O, O—H······N and O—H······O hydrogen bonds, forming a three-dimensional network (Figure 2).

For background to metal-organic framework structures (MOFs), see: Batten & Robson (1998); Burrows (2011); Jin et al. (2010); Tanabe & Cohen (2011). For the use of N,N'-type ligands in MOFs, see: Custelcean (2010); Pschirer et al. (2002). For the structural analysis of an imidazole closely related to the ligand, see: Voss et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The three-dimensional supramolecular packing architecture of (I) with hydrogen-bonds depicted as dashed lines.
Diaquabis[4-(1H-imidazol-2-yl)pyridine-κN]bis(nitrato- κO)cadmium top
Crystal data top
[Cd(NO3)2(C8H7N3)2(H2O)2]F(000) = 564
Mr = 562.78Dx = 1.760 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4257 reflections
a = 7.2508 (7) Åθ = 2.4–28.3°
b = 12.1372 (12) ŵ = 1.09 mm1
c = 12.3509 (12) ÅT = 298 K
β = 102.278 (2)°Block, colorless
V = 1062.07 (18) Å30.16 × 0.12 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2462 independent reflections
Radiation source: fine-focus sealed tube2272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 79
Tmin = 0.845, Tmax = 0.899k = 1515
6543 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0252P)2 + 1.0694P]
where P = (Fo2 + 2Fc2)/3
2462 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.73 e Å3
3 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cd(NO3)2(C8H7N3)2(H2O)2]V = 1062.07 (18) Å3
Mr = 562.78Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.2508 (7) ŵ = 1.09 mm1
b = 12.1372 (12) ÅT = 298 K
c = 12.3509 (12) Å0.16 × 0.12 × 0.10 mm
β = 102.278 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2462 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2272 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.899Rint = 0.046
6543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.73 e Å3
2462 reflectionsΔρmin = 0.47 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.50000.50000.03811 (11)
C10.8396 (5)0.6142 (2)0.2671 (2)0.0466 (7)
H10.84650.67540.31310.056*
C20.7823 (5)0.6301 (2)0.1550 (2)0.0456 (7)
H20.74980.70020.12690.055*
C30.7732 (4)0.5408 (2)0.0842 (2)0.0341 (5)
C40.8205 (5)0.4390 (2)0.1325 (2)0.0499 (8)
H40.81460.37640.08850.060*
C50.8761 (5)0.4304 (3)0.2458 (2)0.0497 (7)
H50.90860.36120.27620.060*
C60.7176 (4)0.5554 (2)0.0359 (2)0.0337 (5)
C70.6323 (5)0.6241 (3)0.1984 (2)0.0502 (7)
H70.59500.67480.25520.060*
C80.6534 (5)0.5154 (3)0.2132 (3)0.0506 (8)
H80.63500.47790.28030.061*
N10.8860 (4)0.51635 (18)0.3142 (2)0.0396 (5)
N20.6733 (4)0.6497 (2)0.08794 (19)0.0426 (5)
N30.7075 (4)0.4715 (2)0.1096 (2)0.0427 (6)
H30.73090.40320.09390.051*
N40.7084 (3)0.6785 (2)0.5340 (2)0.0411 (5)
O10.8766 (3)0.6853 (3)0.5384 (2)0.0747 (8)
O20.6297 (5)0.5914 (2)0.5037 (3)0.0965 (11)
O30.6156 (3)0.75586 (18)0.5590 (2)0.0562 (6)
O41.2220 (3)0.63059 (19)0.4800 (2)0.0573 (6)
H4B1.200 (5)0.6945 (15)0.461 (4)0.086*
H4A1.334 (2)0.617 (3)0.490 (4)0.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05052 (19)0.03477 (16)0.02528 (16)0.00965 (11)0.00034 (11)0.00115 (10)
C10.071 (2)0.0372 (14)0.0297 (13)0.0023 (14)0.0073 (13)0.0033 (11)
C20.069 (2)0.0356 (14)0.0303 (14)0.0046 (14)0.0079 (13)0.0017 (11)
C30.0388 (13)0.0346 (12)0.0279 (12)0.0030 (11)0.0050 (10)0.0008 (10)
C40.081 (2)0.0318 (14)0.0306 (14)0.0012 (14)0.0011 (14)0.0041 (11)
C50.074 (2)0.0355 (14)0.0333 (15)0.0032 (14)0.0040 (13)0.0036 (12)
C60.0389 (13)0.0332 (13)0.0285 (12)0.0001 (10)0.0059 (10)0.0012 (10)
C70.065 (2)0.0547 (18)0.0284 (14)0.0112 (15)0.0049 (13)0.0079 (12)
C80.069 (2)0.0556 (19)0.0252 (14)0.0020 (15)0.0045 (13)0.0020 (12)
N10.0523 (14)0.0368 (12)0.0267 (12)0.0080 (10)0.0014 (10)0.0007 (9)
N20.0578 (15)0.0393 (12)0.0303 (11)0.0077 (11)0.0083 (10)0.0027 (9)
N30.0615 (16)0.0356 (11)0.0293 (12)0.0016 (11)0.0055 (11)0.0029 (9)
N40.0460 (13)0.0387 (13)0.0408 (13)0.0056 (10)0.0142 (10)0.0112 (10)
O10.0446 (13)0.111 (2)0.0681 (17)0.0082 (14)0.0112 (12)0.0077 (16)
O20.114 (3)0.0367 (14)0.151 (3)0.0131 (15)0.055 (2)0.0218 (17)
O30.0654 (14)0.0389 (11)0.0700 (16)0.0107 (11)0.0271 (12)0.0021 (10)
O40.0418 (11)0.0386 (12)0.0886 (18)0.0045 (9)0.0075 (12)0.0101 (12)
Geometric parameters (Å, º) top
Cd1—N12.276 (2)C5—N11.335 (4)
Cd1—N1i2.276 (2)C5—H50.9300
Cd1—O42.310 (2)C6—N21.319 (3)
Cd1—O4i2.310 (2)C6—N31.357 (3)
Cd1—O12.503 (3)C7—C81.345 (4)
Cd1—O1i2.503 (3)C7—N21.368 (4)
C1—N11.333 (4)C7—H70.9300
C1—C21.371 (4)C8—N31.364 (4)
C1—H10.9300C8—H80.9300
C2—C31.386 (4)N3—H30.8600
C2—H20.9300N4—O11.211 (3)
C3—C41.384 (4)N4—O21.222 (4)
C3—C61.463 (3)N4—O31.232 (3)
C4—C51.374 (4)O4—H4B0.816 (10)
C4—H40.9300O4—H4A0.814 (10)
N1—Cd1—N1i180.00 (4)N1—C5—C4123.4 (3)
N1—Cd1—O486.81 (9)N1—C5—H5118.3
N1i—Cd1—O493.19 (9)C4—C5—H5118.3
N1—Cd1—O4i93.19 (9)N2—C6—N3110.6 (2)
N1i—Cd1—O4i86.81 (9)N2—C6—C3125.8 (2)
O4—Cd1—O4i180.0N3—C6—C3123.6 (2)
N1—Cd1—O192.58 (9)C8—C7—N2110.6 (3)
N1i—Cd1—O187.42 (9)C8—C7—H7124.7
O4—Cd1—O171.89 (9)N2—C7—H7124.7
O4i—Cd1—O1108.11 (9)C7—C8—N3105.9 (3)
N1—Cd1—O1i87.42 (9)C7—C8—H8127.1
N1i—Cd1—O1i92.58 (9)N3—C8—H8127.1
O4—Cd1—O1i108.11 (9)C1—N1—C5116.4 (3)
O4i—Cd1—O1i71.89 (9)C1—N1—Cd1121.42 (18)
O1—Cd1—O1i180.00 (7)C5—N1—Cd1121.97 (19)
N1—C1—C2124.1 (3)C6—N2—C7105.5 (2)
N1—C1—H1118.0C6—N3—C8107.4 (3)
C2—C1—H1118.0C6—N3—H3126.3
C1—C2—C3119.4 (3)C8—N3—H3126.3
C1—C2—H2120.3O1—N4—O2118.2 (3)
C3—C2—H2120.3O1—N4—O3122.4 (3)
C4—C3—C2116.9 (2)O2—N4—O3119.4 (3)
C4—C3—C6122.3 (3)N4—O1—Cd1109.1 (2)
C2—C3—C6120.8 (2)Cd1—O4—H4B126 (3)
C5—C4—C3119.9 (3)Cd1—O4—H4A123 (3)
C5—C4—H4120.0H4B—O4—H4A111 (2)
C3—C4—H4120.0
N1—C1—C2—C30.9 (5)O1i—Cd1—N1—C1161.4 (3)
C1—C2—C3—C41.1 (5)N1i—Cd1—N1—C5114 (15)
C1—C2—C3—C6178.3 (3)O4—Cd1—N1—C5121.5 (3)
C2—C3—C4—C51.0 (5)O4i—Cd1—N1—C558.5 (3)
C6—C3—C4—C5178.4 (3)O1—Cd1—N1—C5166.8 (3)
C3—C4—C5—N10.7 (6)O1i—Cd1—N1—C513.2 (3)
C4—C3—C6—N2179.0 (3)N3—C6—N2—C70.5 (3)
C2—C3—C6—N20.4 (4)C3—C6—N2—C7179.7 (3)
C4—C3—C6—N30.1 (4)C8—C7—N2—C60.6 (4)
C2—C3—C6—N3179.4 (3)N2—C6—N3—C80.2 (4)
N2—C7—C8—N30.5 (4)C3—C6—N3—C8179.4 (3)
C2—C1—N1—C50.6 (5)C7—C8—N3—C60.2 (4)
C2—C1—N1—Cd1175.5 (3)O2—N4—O1—Cd16.3 (4)
C4—C5—N1—C10.5 (5)O3—N4—O1—Cd1173.7 (2)
C4—C5—N1—Cd1175.3 (3)N1—Cd1—O1—N477.8 (2)
N1i—Cd1—N1—C172 (15)N1i—Cd1—O1—N4102.2 (2)
O4—Cd1—N1—C153.1 (3)O4—Cd1—O1—N4163.6 (2)
O4i—Cd1—N1—C1126.9 (3)O4i—Cd1—O1—N416.4 (2)
O1—Cd1—N1—C118.6 (3)O1i—Cd1—O1—N429 (12)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3ii0.862.102.923 (3)160
O4—H4B···N2iii0.82 (1)1.98 (1)2.796 (3)174 (4)
O4—H4A···O2iv0.81 (1)2.14 (1)2.946 (4)174 (4)
O4—H4A···O3iv0.81 (1)2.65 (3)3.197 (3)126 (3)
Symmetry codes: (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(NO3)2(C8H7N3)2(H2O)2]
Mr562.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.2508 (7), 12.1372 (12), 12.3509 (12)
β (°) 102.278 (2)
V3)1062.07 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.845, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
6543, 2462, 2272
Rint0.046
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.10
No. of reflections2462
No. of parameters157
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.47

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.862.102.923 (3)159.5
O4—H4B···N2ii0.816 (10)1.982 (12)2.796 (3)174 (4)
O4—H4A···O2iii0.814 (10)2.135 (12)2.946 (4)174 (4)
O4—H4A···O3iii0.814 (10)2.65 (3)3.197 (3)126 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support by the National Natural Science Foundation of China (21171053) and the Science Foundation of Hubei Provincial Department of Education (Z20102501).

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (2004). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D. (2011). CrystEngComm, 13, 3623–3642.  Web of Science CrossRef CAS Google Scholar
First citationCustelcean, R. (2010). Chem. Soc. Rev. 39, 3675–3685.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJin, C.-M., Zhu, Z., Chen, Z.-F., Hu, Y.-J. & Meng, X.-G. (2010). Cryst. Growth Des. 10, 2054–2056.  Web of Science CrossRef CAS Google Scholar
First citationPschirer, N. G., Curtin, D. M., Smith, M. D., Bunz, U. H. F. & Zur Loye, H.-C. (2002). Angew. Chem. Int. Ed. Engl. 41, 583–585.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanabe, K. K. & Cohen, S. M. (2011). Chem. Soc. Rev. 40, 498–519.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVoss, M. E., Beer, C. M., Mitchell, S. A., Blomgren, P. A. & Zhichkin, P. E. (2008). Tetrahedron, 64, 645–651.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds