supplementary materials


is5223 scheme

Acta Cryst. (2013). E69, m46    [ doi:10.1107/S1600536812049069 ]

1,1'-Bis(tert-butyldimethylsilyl)ferrocene

A. Abri, B. Soltani, C. J. Ziegler, J. T. Engle and R. Kia

Abstract top

The asymmetric unit of the title compound, [Fe(C11H19Si)2], consists of one half of a ferrocene derivative. The FeII atom lies on a twofold rotation axis, giving an eclipsed conformation for the cyclopentadienyl ligands. No significant intermolecular interactions are observed in the crystal structure.

Comment top

Ferrocene has attracted the interest of many scientists and research groups worldwide because of its applications in materials science (Hudson et al., 2001; Liu et al., 2000). Ferrocene as a starting material in synthetic organometallic systems and its derivatives in industrial applications have become a great area of interest for many researchers and industrial chemists.

The asymmetric unit of the title compound comprises a half of a ferrocene drivative (Fig. 1). The FeII atom lies on a twofold rotation axis, giving an eclipsed conformation for the cyclopentadienyl ligands. The bond lengths and angles are within the normal ranges and are comparable to the related structure (Ren et al., 2012).

Related literature top

For background to ferrocene derivatives and their applications, see: Hudson et al. (2001); Liu et al. (2000). For a related structure, see: Ren et al. (2012).

Experimental top

To a stirred solution of ferrocene (5.00 g, 26.88 mmol) in 100 ml of n-hexane, a solution containing 9.2 ml (60 mmol) tetramethylethylenediamine (tmeda) and 35 ml (56 mmol) of a 1.6 M of n-BuLi in 30 ml of n-hexane was added dropwise over 5 min, and mixture was stirred overnight. The orange precipitate of FcLi2 was collected. A THF solution (20 ml) containing FcLi2 (0.67 g, 3.5 mmol) was added dropwise to a THF solution (10 ml) of 1.67 ml t-butyldimethylchlorosilane (13.9 mmol) at -30 °C, and were kept for 30 min at -30 °C and then stirred over night at room temperature. The solvent THF was evaporated together with the excess of chlorosilane under vacuum, then, the orange residue dissolved in n-hexane (30 ml) and the solution filtered over Na2SO4. The solvent n-hexane was removed under vacuum and the product heated up for 1 h in order to sublime the impurities of ferrocene off. The remaining dark-orange oil or solid (0.69 g, 55% yield) was obtained. Single Crystals suitable for X-ray analysis were obtained by slow evaporation from a n-hexane solution at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.95 or 0.98 Å and included in a riding model approximation with Uiso (H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A: -x + 2, y, -z + 1/2]. The H atoms were omitted for clarity.
1,1'-Bis(tert-butyldimethylsilyl)ferrocene top
Crystal data top
[Fe(C11H19Si)2]F(000) = 896
Mr = 414.55Dx = 1.206 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9976 reflections
a = 7.1282 (6) Åθ = 2.3–27.2°
b = 12.1466 (10) ŵ = 0.77 mm1
c = 26.363 (2) ÅT = 100 K
V = 2282.6 (3) Å3Block, orange
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2529 independent reflections
Radiation source: fine-focus sealed tube2323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 27.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.861, Tmax = 0.927k = 1515
17220 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0312P)2 + 1.1338P]
where P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C11H19Si)2]V = 2282.6 (3) Å3
Mr = 414.55Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 7.1282 (6) ŵ = 0.77 mm1
b = 12.1466 (10) ÅT = 100 K
c = 26.363 (2) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2323 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.927Rint = 0.037
17220 measured reflectionsθmax = 27.2°
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.36 e Å3
S = 1.05Δρmin = 0.24 e Å3
2529 reflectionsAbsolute structure: ?
114 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe11.00000.03916 (2)0.25000.01182 (9)
Si10.96501 (5)0.11765 (3)0.122364 (13)0.01274 (10)
C10.7486 (2)0.04225 (12)0.24866 (5)0.0212 (3)
H10.71610.10510.26820.025*
C20.8338 (2)0.04320 (11)0.19970 (5)0.0181 (3)
H20.86740.10720.18110.022*
C30.86070 (18)0.06855 (10)0.18305 (5)0.0143 (3)
C40.78856 (18)0.13706 (11)0.22318 (5)0.0167 (3)
H40.78660.21530.22300.020*
C50.72076 (18)0.06891 (12)0.26299 (5)0.0197 (3)
H50.66630.09360.29380.024*
C61.14332 (19)0.01654 (11)0.09925 (5)0.0198 (3)
H6A1.24460.01030.12420.030*
H6B1.19490.04190.06680.030*
H6C1.08390.05550.09460.030*
C71.0752 (2)0.25562 (11)0.13317 (5)0.0203 (3)
H7A1.17640.24860.15810.030*
H7B0.98030.30710.14590.030*
H7C1.12660.28330.10120.030*
C80.76825 (18)0.13000 (10)0.07396 (5)0.0156 (3)
C90.6877 (2)0.01524 (12)0.06271 (5)0.0231 (3)
H9A0.58640.02160.03780.035*
H9B0.63840.01700.09410.035*
H9D0.78700.03210.04910.035*
C100.61107 (19)0.20356 (12)0.09496 (5)0.0212 (3)
H10A0.51030.20950.06980.032*
H10D0.66130.27700.10220.032*
H10B0.56130.17110.12620.032*
C110.8419 (2)0.18068 (12)0.02429 (5)0.0233 (3)
H11D0.73890.18640.00020.035*
H11A0.94090.13370.01030.035*
H11B0.89270.25420.03110.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01172 (14)0.01365 (14)0.01008 (14)0.0000.00130 (9)0.000
Si10.01328 (17)0.01321 (18)0.01173 (17)0.00049 (13)0.00074 (13)0.00000 (12)
C10.0187 (7)0.0279 (8)0.0170 (7)0.0100 (6)0.0031 (5)0.0032 (5)
C20.0212 (7)0.0189 (7)0.0142 (6)0.0060 (5)0.0039 (5)0.0003 (5)
C30.0130 (6)0.0168 (6)0.0130 (6)0.0010 (5)0.0042 (5)0.0004 (5)
C40.0135 (6)0.0221 (7)0.0146 (6)0.0036 (5)0.0030 (5)0.0009 (5)
C50.0107 (6)0.0339 (8)0.0145 (6)0.0004 (6)0.0010 (5)0.0009 (5)
C60.0175 (6)0.0218 (7)0.0202 (7)0.0021 (6)0.0002 (5)0.0022 (5)
C70.0217 (7)0.0179 (7)0.0212 (7)0.0034 (6)0.0016 (6)0.0004 (5)
C80.0171 (6)0.0177 (6)0.0121 (6)0.0005 (5)0.0012 (5)0.0011 (5)
C90.0236 (7)0.0245 (7)0.0213 (7)0.0034 (6)0.0079 (6)0.0021 (5)
C100.0185 (7)0.0271 (7)0.0179 (6)0.0051 (6)0.0019 (5)0.0022 (5)
C110.0244 (7)0.0309 (8)0.0146 (6)0.0029 (6)0.0009 (6)0.0043 (5)
Geometric parameters (Å, º) top
Fe1—C2i2.0401 (13)C4—H40.9500
Fe1—C22.0402 (13)C5—H50.9500
Fe1—C42.0460 (13)C6—H6A0.9800
Fe1—C4i2.0460 (13)C6—H6B0.9800
Fe1—C1i2.0473 (15)C6—H6C0.9800
Fe1—C12.0473 (15)C7—H7A0.9800
Fe1—C5i2.0518 (13)C7—H7B0.9800
Fe1—C52.0518 (13)C7—H7C0.9800
Fe1—C32.0564 (12)C8—C91.5363 (19)
Fe1—C3i2.0565 (12)C8—C101.5364 (18)
Si1—C31.8622 (13)C8—C111.5391 (17)
Si1—C61.8696 (14)C9—H9A0.9800
Si1—C71.8726 (14)C9—H9B0.9800
Si1—C81.9022 (13)C9—H9D0.9800
C1—C51.416 (2)C10—H10A0.9800
C1—C21.4267 (19)C10—H10D0.9800
C1—H10.9500C10—H10B0.9800
C2—C31.4394 (17)C11—H11D0.9800
C2—H20.9500C11—H11A0.9800
C3—C41.4409 (17)C11—H11B0.9800
C4—C51.4214 (19)
C2i—Fe1—C2121.27 (8)C3—C2—Fe170.04 (7)
C2i—Fe1—C4159.61 (5)C1—C2—H2125.5
C2—Fe1—C468.45 (5)C3—C2—H2125.5
C2i—Fe1—C4i68.45 (5)Fe1—C2—H2126.2
C2—Fe1—C4i159.61 (5)C2—C3—C4105.85 (11)
C4—Fe1—C4i108.92 (8)C2—C3—Si1128.11 (10)
C2i—Fe1—C1i40.86 (5)C4—C3—Si1126.04 (10)
C2—Fe1—C1i106.42 (6)C2—C3—Fe168.82 (7)
C4—Fe1—C1i158.69 (5)C4—C3—Fe169.05 (7)
C4i—Fe1—C1i68.27 (6)Si1—C3—Fe1126.88 (7)
C2i—Fe1—C1106.42 (6)C5—C4—C3109.09 (12)
C2—Fe1—C140.86 (5)C5—C4—Fe169.92 (7)
C4—Fe1—C168.27 (6)C3—C4—Fe169.83 (7)
C4i—Fe1—C1158.69 (5)C5—C4—H4125.5
C1i—Fe1—C1122.24 (9)C3—C4—H4125.5
C2i—Fe1—C5i68.38 (6)Fe1—C4—H4126.4
C2—Fe1—C5i122.76 (6)C1—C5—C4108.11 (12)
C4—Fe1—C5i123.69 (6)C1—C5—Fe169.62 (8)
C4i—Fe1—C5i40.59 (5)C4—C5—Fe169.48 (7)
C1i—Fe1—C5i40.42 (6)C1—C5—H5125.9
C1—Fe1—C5i158.67 (6)C4—C5—H5125.9
C2i—Fe1—C5122.76 (6)Fe1—C5—H5126.5
C2—Fe1—C568.38 (6)Si1—C6—H6A109.5
C4—Fe1—C540.59 (5)Si1—C6—H6B109.5
C4i—Fe1—C5123.68 (6)H6A—C6—H6B109.5
C1i—Fe1—C5158.67 (6)Si1—C6—H6C109.5
C1—Fe1—C540.42 (6)H6A—C6—H6C109.5
C5i—Fe1—C5159.71 (9)H6B—C6—H6C109.5
C2i—Fe1—C3157.42 (5)Si1—C7—H7A109.5
C2—Fe1—C341.14 (5)Si1—C7—H7B109.5
C4—Fe1—C341.13 (5)H7A—C7—H7B109.5
C4i—Fe1—C3123.47 (5)Si1—C7—H7C109.5
C1i—Fe1—C3121.43 (5)H7A—C7—H7C109.5
C1—Fe1—C369.29 (5)H7B—C7—H7C109.5
C5i—Fe1—C3107.13 (5)C9—C8—C10108.95 (11)
C5—Fe1—C369.16 (5)C9—C8—C11109.03 (11)
C2i—Fe1—C3i41.14 (5)C10—C8—C11108.82 (11)
C2—Fe1—C3i157.42 (5)C9—C8—Si1109.48 (9)
C4—Fe1—C3i123.46 (5)C10—C8—Si1109.98 (9)
C4i—Fe1—C3i41.13 (5)C11—C8—Si1110.54 (9)
C1i—Fe1—C3i69.29 (5)C8—C9—H9A109.5
C1—Fe1—C3i121.42 (5)C8—C9—H9B109.5
C5i—Fe1—C3i69.16 (5)H9A—C9—H9B109.5
C5—Fe1—C3i107.13 (5)C8—C9—H9D109.5
C3—Fe1—C3i160.00 (7)H9A—C9—H9D109.5
C3—Si1—C6109.94 (6)H9B—C9—H9D109.5
C3—Si1—C7108.87 (6)C8—C10—H10A109.5
C6—Si1—C7110.63 (6)C8—C10—H10D109.5
C3—Si1—C8107.89 (6)H10A—C10—H10D109.5
C6—Si1—C8109.53 (6)C8—C10—H10B109.5
C7—Si1—C8109.93 (6)H10A—C10—H10B109.5
C5—C1—C2107.98 (12)H10D—C10—H10B109.5
C5—C1—Fe169.96 (8)C8—C11—H11D109.5
C2—C1—Fe169.30 (8)C8—C11—H11A109.5
C5—C1—H1126.0H11D—C11—H11A109.5
C2—C1—H1126.0C8—C11—H11B109.5
Fe1—C1—H1126.3H11D—C11—H11B109.5
C1—C2—C3108.96 (12)H11A—C11—H11B109.5
C1—C2—Fe169.84 (8)
C2i—Fe1—C1—C5121.60 (8)C5—Fe1—C3—C436.93 (8)
C2—Fe1—C1—C5119.28 (11)C3i—Fe1—C3—C445.93 (7)
C4—Fe1—C1—C537.55 (8)C2i—Fe1—C3—Si176.71 (17)
C4i—Fe1—C1—C548.96 (18)C2—Fe1—C3—Si1122.46 (12)
C1i—Fe1—C1—C5163.33 (9)C4—Fe1—C3—Si1120.02 (12)
C5i—Fe1—C1—C5165.93 (10)C4i—Fe1—C3—Si139.57 (11)
C3—Fe1—C1—C581.80 (8)C1i—Fe1—C3—Si143.76 (11)
C3i—Fe1—C1—C579.33 (9)C1—Fe1—C3—Si1159.69 (10)
C2i—Fe1—C1—C2119.12 (9)C5i—Fe1—C3—Si11.95 (10)
C4—Fe1—C1—C281.73 (8)C5—Fe1—C3—Si1156.94 (10)
C4i—Fe1—C1—C2168.24 (14)C3i—Fe1—C3—Si174.08 (7)
C1i—Fe1—C1—C277.39 (8)C2—C3—C4—C50.22 (14)
C5i—Fe1—C1—C246.65 (18)Si1—C3—C4—C5179.86 (9)
C5—Fe1—C1—C2119.28 (11)Fe1—C3—C4—C559.06 (9)
C3—Fe1—C1—C237.48 (8)C2—C3—C4—Fe159.28 (9)
C3i—Fe1—C1—C2161.39 (8)Si1—C3—C4—Fe1121.08 (10)
C5—C1—C2—C30.20 (16)C2i—Fe1—C4—C541.15 (19)
Fe1—C1—C2—C359.29 (10)C2—Fe1—C4—C581.50 (9)
C5—C1—C2—Fe159.49 (10)C4i—Fe1—C4—C5120.06 (9)
C2i—Fe1—C2—C178.66 (8)C1i—Fe1—C4—C5161.35 (15)
C4—Fe1—C2—C181.27 (9)C1—Fe1—C4—C537.39 (8)
C4i—Fe1—C2—C1167.72 (15)C5i—Fe1—C4—C5162.65 (8)
C1i—Fe1—C2—C1120.62 (11)C3—Fe1—C4—C5120.35 (11)
C5i—Fe1—C2—C1161.66 (9)C3i—Fe1—C4—C576.78 (10)
C5—Fe1—C2—C137.47 (8)C2i—Fe1—C4—C3161.50 (15)
C3—Fe1—C2—C1120.11 (12)C2—Fe1—C4—C338.85 (8)
C3i—Fe1—C2—C145.19 (18)C4i—Fe1—C4—C3119.58 (8)
C2i—Fe1—C2—C3161.23 (9)C1i—Fe1—C4—C341.00 (19)
C4—Fe1—C2—C338.84 (8)C1—Fe1—C4—C382.96 (8)
C4i—Fe1—C2—C347.61 (19)C5i—Fe1—C4—C376.99 (9)
C1i—Fe1—C2—C3119.27 (8)C5—Fe1—C4—C3120.35 (11)
C1—Fe1—C2—C3120.11 (12)C3i—Fe1—C4—C3162.87 (7)
C5i—Fe1—C2—C378.22 (10)C2—C1—C5—C40.06 (16)
C5—Fe1—C2—C382.65 (8)Fe1—C1—C5—C459.01 (9)
C3i—Fe1—C2—C3165.30 (9)C2—C1—C5—Fe159.08 (10)
C1—C2—C3—C40.26 (15)C3—C4—C5—C10.10 (15)
Fe1—C2—C3—C459.42 (8)Fe1—C4—C5—C159.10 (10)
C1—C2—C3—Si1179.89 (10)C3—C4—C5—Fe159.00 (9)
Fe1—C2—C3—Si1120.94 (11)C2i—Fe1—C5—C176.28 (9)
C1—C2—C3—Fe159.17 (10)C2—Fe1—C5—C137.86 (8)
C6—Si1—C3—C230.07 (14)C4—Fe1—C5—C1119.54 (11)
C7—Si1—C3—C2151.41 (12)C4i—Fe1—C5—C1160.77 (7)
C8—Si1—C3—C289.33 (13)C1i—Fe1—C5—C141.8 (2)
C6—Si1—C3—C4150.36 (11)C5i—Fe1—C5—C1165.22 (8)
C7—Si1—C3—C429.03 (13)C3—Fe1—C5—C182.14 (8)
C8—Si1—C3—C490.24 (12)C3i—Fe1—C5—C1118.66 (8)
C6—Si1—C3—Fe160.76 (9)C2i—Fe1—C5—C4164.18 (8)
C7—Si1—C3—Fe160.57 (10)C2—Fe1—C5—C481.67 (8)
C8—Si1—C3—Fe1179.84 (7)C4i—Fe1—C5—C479.69 (11)
C2i—Fe1—C3—C245.8 (2)C1i—Fe1—C5—C4161.38 (13)
C4—Fe1—C3—C2117.52 (11)C1—Fe1—C5—C4119.54 (11)
C4i—Fe1—C3—C2162.04 (8)C5i—Fe1—C5—C445.68 (7)
C1i—Fe1—C3—C278.70 (10)C3—Fe1—C5—C437.39 (8)
C1—Fe1—C3—C237.23 (8)C3i—Fe1—C5—C4121.81 (8)
C5i—Fe1—C3—C2120.52 (9)C3—Si1—C8—C965.20 (10)
C5—Fe1—C3—C280.59 (9)C6—Si1—C8—C954.46 (11)
C3i—Fe1—C3—C2163.45 (8)C7—Si1—C8—C9176.22 (9)
C2i—Fe1—C3—C4163.27 (13)C3—Si1—C8—C1054.48 (10)
C2—Fe1—C3—C4117.52 (11)C6—Si1—C8—C10174.14 (9)
C4i—Fe1—C3—C480.44 (11)C7—Si1—C8—C1064.10 (11)
C1i—Fe1—C3—C4163.78 (8)C3—Si1—C8—C11174.68 (9)
C1—Fe1—C3—C480.29 (8)C6—Si1—C8—C1165.67 (11)
C5i—Fe1—C3—C4121.96 (8)C7—Si1—C8—C1156.09 (11)
Symmetry code: (i) x+2, y, z+1/2.
Acknowledgements top

AA thanks Azarbaijan Shahid Madani University for financial support. CJZ and JTE thank University of Akron for the X-ray facility.

references
References top

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Hudson, R. D. A. (2001). J. Organomet. Chem. 637, 47–50.

Liu, J., Castro, R., Abboud, K. A. & Kaifer, A. E. (2000). J. Org. Chem. 65, 6973–6976.

Ren, X., Wang, L. & Li, Y. (2012). Acta Cryst. E68, m922.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.