organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-7,7-di­methyl-5-oxo-4-[3-(tri­fluoro­meth­yl)phen­yl]-1,4,5,6,7,8-hexa­hydro­quinoline-3-carbo­nitrile

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur 416 004 (MS), India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 9 December 2012; accepted 13 December 2012; online 19 December 2012)

In the title mol­ecule, C19H18F3N3O, the dihydro­pyridine and cyclo­hexene rings both adopt sofa conformations. The five essentially planar atoms of the dihydro­pyridine ring [maximum deviation = 0.039 (2) Å] form a dihedral angle of 88.19 (8)° with the benzene ring. The F atoms of the trifluoro­methyl group were refined as disordered over two sets of sites in a 0.840 (3):0.160 (3) ratio. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link mol­ecules into a two-dimensional network parallel to (100).

Related literature

For applications of dihydro­pyridines, see: Mayler et al. (1989[Mayler, W. G. (1989). In Calcium Antagonist. London: Academic Press.]); Triggle et al.(1989[Triggle, D. J., Langs, D. A. & Jamis, R. A. (1989). Med. Res. Rev. 9, 123-180.]); Leon et al. (2008[Leon, R., Rios, C., Contelles, J. M., Lopez, G. M., Garcia, A. G. & Villarroya, M. (2008). Eur. J. Med. Chem. 43, 668-674.]). For related structures, see: Jiang et al. (2006[Jiang, H., Wang, X.-S., Zhang, M.-M., Li, Y.-L. & Shi, D.-Q. (2006). Acta Cryst. E62, o1184-o1186.]); Tu et al. (2005[Tu, S., Zhang, J., Zhu, X., Xu, J. & Wang, Q. (2005). Acta Cryst. E61, o983-o985.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18F3N3O

  • Mr = 361.36

  • Monoclinic, C 2/c

  • a = 24.2434 (6) Å

  • b = 9.6030 (2) Å

  • c = 15.2426 (4) Å

  • β = 93.960 (2)°

  • V = 3540.15 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.896, Tmax = 1.000

  • 42194 measured reflections

  • 3469 independent reflections

  • 2462 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.143

  • S = 1.03

  • 3469 reflections

  • 247 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.39 3.117 (2) 143
N16—H16A⋯N20ii 0.86 2.12 2.966 (3) 168
N16—H16B⋯O1i 0.86 2.08 2.897 (2) 158
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The nucleus containing 1,4- dihydropyridine (DHP) nucleus act as a versatile intermediate for the synthesis of several pharmaceuticals together with those of cardiovascular drugs and as a calcium channel modulators, laser dyes and photo initiators (Leon et al., 2008). The design and synthesis of 1,4-dihydropyridines has attracted much attention over the past 30 years due to the calcium antagonist effect they display (Mayler, 1989). The establishment of the pharmacological action as drugs for the treatment of cardiovascular diseases such as angina, hypertension or arrhythmia was mainly based on the structural studies carried out by X-ray diffraction on differently substituted 1,4-dihydropyridines (Triggle et al., 1989). In this paper, we report the crystal structure of the title compound, (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Jiang et al.,2006; Tu et al., 2005). The (N1/C2/C3/C4/C4A/C8A) and (C4A/C5—C8/C8A) rings adopt sofa conformations (ΔCs(C4) = 3.35 & ΔCs (C7) = 6.70) (Duax & Norton, 1975) with atoms C4 and C7 forming the flaps in each ring. The five essentially planar atoms (N1/C2/C3/C4A/C8A) of the dihydropyridine ring (maximum deviation 0.039 (2)Å for C8) form a dihedral angle of 88.19 (8)° with the benzene ring. The F atoms of the trifluoromethyl group are disordered over two sets of sites in a 0.840 (3):0.160 (3) ratio. In the crystal, N—H···O and N—H···N hydrogen bonds (Table 1) link molecules into a two-dimensional network parallel to (100) (Fig. 2).

Related literature top

For applications of dihydropyridines, see: Mayler et al. (1989); Triggle et al.(1989); Leon et al. (2008). For related structures, see: Jiang et al. (2006); Tu et al. (2005). For ring conformations, see: Duax & Norton (1975).

Experimental top

In a 50 ml round bottom flask 5,5-dimethylcyclohexane- 1,3-dione (1 mmol) and ammonium acetate (3.5 mmol) were taken in water (10 ml). The reaction mixture was stirred at 373K for 40 min. Then malononitrile (1 mmol), 3-trifluoro methyl benzaldehyde (1 mmol) were charged, and the mixture was heated at 373K for 30 min. After the completion of reaction (monitored by TLC), the reaction mixture was stirred at RT for 15 min. The separated solid was then filtered off and recrystallized from ethanol to afford pure product as crystals suitable for X-ray diffraction. M.P.: 558–560 K, Yield: 83%.

IR(KBr): 3392, 3335, 3225, 2922, 2180, 1657, 1605, 1478 cm-1. 1H NMR (300 MHz, DMSO-d6): δ 0.87(s, 3H, CH3), 1.00(s, 3H, CH3), 2.15–2.34(dd, 2H, J= 18 Hz, CH2), 2.42–2.49(dd, 2H, J= 17.4 Hz, CH2), 4.42 (s, 1H, CH), 5.89(s, 2H, NH2), 7.38–7.55(m, 4H, Ar—H), 9.09(br s, 1H, NH).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.98 Å, N—H distances of 0.86 and with Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(methyl C).

Structure description top

The nucleus containing 1,4- dihydropyridine (DHP) nucleus act as a versatile intermediate for the synthesis of several pharmaceuticals together with those of cardiovascular drugs and as a calcium channel modulators, laser dyes and photo initiators (Leon et al., 2008). The design and synthesis of 1,4-dihydropyridines has attracted much attention over the past 30 years due to the calcium antagonist effect they display (Mayler, 1989). The establishment of the pharmacological action as drugs for the treatment of cardiovascular diseases such as angina, hypertension or arrhythmia was mainly based on the structural studies carried out by X-ray diffraction on differently substituted 1,4-dihydropyridines (Triggle et al., 1989). In this paper, we report the crystal structure of the title compound, (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Jiang et al.,2006; Tu et al., 2005). The (N1/C2/C3/C4/C4A/C8A) and (C4A/C5—C8/C8A) rings adopt sofa conformations (ΔCs(C4) = 3.35 & ΔCs (C7) = 6.70) (Duax & Norton, 1975) with atoms C4 and C7 forming the flaps in each ring. The five essentially planar atoms (N1/C2/C3/C4A/C8A) of the dihydropyridine ring (maximum deviation 0.039 (2)Å for C8) form a dihedral angle of 88.19 (8)° with the benzene ring. The F atoms of the trifluoromethyl group are disordered over two sets of sites in a 0.840 (3):0.160 (3) ratio. In the crystal, N—H···O and N—H···N hydrogen bonds (Table 1) link molecules into a two-dimensional network parallel to (100) (Fig. 2).

For applications of dihydropyridines, see: Mayler et al. (1989); Triggle et al.(1989); Leon et al. (2008). For related structures, see: Jiang et al. (2006); Tu et al. (2005). For ring conformations, see: Duax & Norton (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. The F atoms are disorded over two sets of sites.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the b axis. The dashed lines show intermolecular N—H···O and N—H···N hydrogen bonds. The disorder is not shown.
2-Amino-7,7-dimethyl-5-oxo-4-[3-(trifluoromethyl)phenyl]-1,4,5,6,7,8- hexahydroquinoline-3-carbonitrile top
Crystal data top
C19H18F3N3OF(000) = 1504
Mr = 361.36Dx = 1.356 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 14640 reflections
a = 24.2434 (6) Åθ = 3.4–29.1°
b = 9.6030 (2) ŵ = 0.11 mm1
c = 15.2426 (4) ÅT = 293 K
β = 93.960 (2)°Block, white
V = 3540.15 (15) Å30.3 × 0.2 × 0.2 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3469 independent reflections
Radiation source: fine-focus sealed tube2462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 2929
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.896, Tmax = 1.000l = 1818
42194 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0559P)2 + 3.608P]
where P = (Fo2 + 2Fc2)/3
3469 reflections(Δ/σ)max = 0.021
247 parametersΔρmax = 0.31 e Å3
6 restraintsΔρmin = 0.39 e Å3
Crystal data top
C19H18F3N3OV = 3540.15 (15) Å3
Mr = 361.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.2434 (6) ŵ = 0.11 mm1
b = 9.6030 (2) ÅT = 293 K
c = 15.2426 (4) Å0.3 × 0.2 × 0.2 mm
β = 93.960 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3469 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2462 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 1.000Rint = 0.059
42194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0576 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3469 reflectionsΔρmin = 0.39 e Å3
247 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.08447 (8)0.55967 (18)1.03562 (11)0.0401 (5)
H10.09540.53791.08870.048*
O10.07532 (8)0.42797 (18)0.73842 (10)0.0563 (5)
C20.06002 (9)0.6875 (2)1.01957 (13)0.0362 (5)
C30.04788 (9)0.7283 (2)0.93483 (13)0.0354 (5)
C40.06809 (9)0.6491 (2)0.85675 (13)0.0363 (5)
H40.03740.64420.81150.044*
C4A0.08252 (9)0.5025 (2)0.88458 (13)0.0350 (5)
C50.08524 (9)0.3977 (2)0.81668 (14)0.0398 (5)
C60.09892 (10)0.2509 (2)0.84435 (15)0.0456 (6)
H6A0.11670.20450.79720.055*
H6B0.06480.20160.85310.055*
C70.13683 (10)0.2413 (2)0.92868 (15)0.0423 (5)
C80.10963 (10)0.3241 (2)0.99962 (14)0.0432 (6)
H8A0.07760.27321.01720.052*
H8B0.13550.33251.05080.052*
C8A0.09185 (9)0.4663 (2)0.96972 (13)0.0356 (5)
C90.11521 (10)0.7283 (2)0.81799 (13)0.0396 (5)
C100.16917 (10)0.7220 (2)0.85492 (14)0.0430 (6)
H100.17780.66330.90240.052*
C110.21021 (11)0.8024 (3)0.82171 (16)0.0512 (6)
C120.19821 (14)0.8905 (3)0.75167 (18)0.0651 (8)
H120.22590.94410.72930.078*
C130.14494 (15)0.8983 (3)0.71519 (18)0.0704 (9)
H130.13640.95850.66840.084*
C140.10400 (12)0.8170 (3)0.74772 (15)0.0547 (7)
H140.06820.82210.72180.066*
C150.26709 (13)0.7982 (4)0.8633 (2)0.0745 (9)
N160.04957 (9)0.7592 (2)1.09228 (12)0.0525 (6)
H16A0.03370.83921.08770.063*
H16B0.05870.72511.14340.063*
C170.19316 (10)0.3023 (3)0.91246 (19)0.0609 (7)
H17A0.18840.39230.88550.091*
H17B0.21190.24180.87420.091*
H17C0.21470.31140.96740.091*
C180.14324 (13)0.0896 (3)0.95821 (18)0.0643 (8)
H18A0.16850.08451.00950.096*
H18B0.15730.03540.91180.096*
H18C0.10790.05350.97190.096*
C190.01978 (9)0.8543 (2)0.91716 (13)0.0392 (5)
N200.00412 (10)0.9548 (2)0.89909 (13)0.0585 (6)
F10.27627 (11)0.8904 (3)0.92719 (19)0.1116 (10)0.840 (3)
F20.30660 (11)0.8169 (6)0.81017 (19)0.168 (2)0.840 (3)
F30.28039 (9)0.6777 (3)0.9066 (2)0.1130 (11)0.840 (3)
F1A0.2709 (7)0.782 (2)0.9463 (6)0.1116 (10)0.160 (3)
F2A0.2907 (6)0.9202 (14)0.8416 (11)0.168 (2)0.160 (3)
F3A0.2932 (6)0.7083 (15)0.8168 (11)0.1130 (11)0.160 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0578 (12)0.0371 (10)0.0246 (9)0.0141 (9)0.0029 (8)0.0001 (7)
O10.0772 (13)0.0577 (11)0.0325 (9)0.0107 (9)0.0065 (8)0.0096 (7)
C20.0402 (12)0.0354 (11)0.0329 (11)0.0057 (9)0.0018 (9)0.0005 (9)
C30.0388 (12)0.0346 (11)0.0324 (11)0.0072 (9)0.0001 (9)0.0006 (9)
C40.0385 (12)0.0411 (12)0.0284 (10)0.0079 (10)0.0046 (9)0.0034 (9)
C4A0.0347 (12)0.0378 (12)0.0321 (11)0.0046 (9)0.0020 (9)0.0037 (9)
C50.0368 (12)0.0460 (13)0.0362 (12)0.0014 (10)0.0010 (9)0.0059 (10)
C60.0522 (14)0.0408 (13)0.0438 (13)0.0045 (11)0.0032 (11)0.0109 (10)
C70.0482 (14)0.0377 (12)0.0412 (12)0.0090 (10)0.0053 (10)0.0007 (10)
C80.0546 (14)0.0372 (12)0.0379 (12)0.0058 (11)0.0049 (10)0.0017 (10)
C8A0.0365 (12)0.0364 (11)0.0336 (11)0.0024 (9)0.0008 (9)0.0038 (9)
C90.0510 (14)0.0403 (12)0.0276 (10)0.0084 (10)0.0041 (10)0.0023 (9)
C100.0489 (14)0.0468 (13)0.0337 (11)0.0060 (11)0.0049 (10)0.0001 (10)
C110.0534 (16)0.0567 (15)0.0450 (14)0.0006 (12)0.0157 (12)0.0084 (12)
C120.078 (2)0.0660 (18)0.0545 (16)0.0052 (16)0.0301 (15)0.0029 (14)
C130.096 (2)0.072 (2)0.0451 (16)0.0086 (18)0.0183 (16)0.0219 (14)
C140.0634 (17)0.0645 (17)0.0356 (13)0.0102 (14)0.0001 (12)0.0101 (12)
C150.0557 (19)0.104 (3)0.0661 (19)0.0103 (18)0.0188 (15)0.0020 (19)
N160.0822 (16)0.0441 (11)0.0312 (10)0.0217 (11)0.0048 (10)0.0007 (9)
C170.0431 (15)0.0735 (18)0.0662 (17)0.0134 (13)0.0044 (12)0.0091 (15)
C180.093 (2)0.0416 (14)0.0585 (16)0.0215 (14)0.0101 (15)0.0004 (12)
C190.0438 (13)0.0441 (13)0.0289 (11)0.0057 (11)0.0034 (9)0.0044 (9)
N200.0766 (16)0.0503 (12)0.0466 (12)0.0247 (12)0.0106 (11)0.0038 (10)
F10.1020 (19)0.117 (2)0.111 (2)0.0025 (18)0.0302 (15)0.0414 (19)
F20.0574 (17)0.364 (6)0.086 (2)0.026 (3)0.0359 (14)0.015 (3)
F30.0607 (15)0.105 (2)0.169 (3)0.0148 (13)0.0228 (16)0.017 (2)
F1A0.1020 (19)0.117 (2)0.111 (2)0.0025 (18)0.0302 (15)0.0414 (19)
F2A0.0574 (17)0.364 (6)0.086 (2)0.026 (3)0.0359 (14)0.015 (3)
F3A0.0607 (15)0.105 (2)0.169 (3)0.0148 (13)0.0228 (16)0.017 (2)
Geometric parameters (Å, º) top
N1—C8A1.367 (3)C10—C111.382 (3)
N1—C21.377 (3)C10—H100.9300
N1—H10.8600C11—C121.377 (4)
O1—C51.235 (3)C11—C151.478 (4)
C2—N161.344 (3)C12—C131.372 (4)
C2—C31.362 (3)C12—H120.9300
C3—C191.406 (3)C13—C141.381 (4)
C3—C41.522 (3)C13—H130.9300
C4—C4A1.504 (3)C14—H140.9300
C4—C91.525 (3)C15—F1A1.272 (9)
C4—H40.9800C15—F3A1.308 (9)
C4A—C8A1.348 (3)C15—F21.309 (3)
C4A—C51.449 (3)C15—F11.323 (4)
C5—C61.503 (3)C15—F2A1.355 (10)
C6—C71.530 (3)C15—F31.360 (4)
C6—H6A0.9700N16—H16A0.8600
C6—H6B0.9700N16—H16B0.8600
C7—C171.522 (3)C17—H17A0.9600
C7—C81.528 (3)C17—H17B0.9600
C7—C181.529 (3)C17—H17C0.9600
C8—C8A1.494 (3)C18—H18A0.9600
C8—H8A0.9700C18—H18B0.9600
C8—H8B0.9700C18—H18C0.9600
C9—C141.381 (3)C19—N201.149 (3)
C9—C101.389 (3)
C8A—N1—C2122.02 (17)C11—C10—C9120.6 (2)
C8A—N1—H1119.0C11—C10—H10119.7
C2—N1—H1119.0C9—C10—H10119.7
N16—C2—C3126.42 (19)C12—C11—C10120.5 (3)
N16—C2—N1114.42 (18)C12—C11—C15119.3 (3)
C3—C2—N1119.14 (18)C10—C11—C15120.1 (2)
C2—C3—C19119.98 (19)C13—C12—C11119.4 (3)
C2—C3—C4122.51 (18)C13—C12—H12120.3
C19—C3—C4117.28 (18)C11—C12—H12120.3
C4A—C4—C3109.16 (17)C12—C13—C14120.2 (3)
C4A—C4—C9114.22 (18)C12—C13—H13119.9
C3—C4—C9110.12 (17)C14—C13—H13119.9
C4A—C4—H4107.7C9—C14—C13121.3 (3)
C3—C4—H4107.7C9—C14—H14119.4
C9—C4—H4107.7C13—C14—H14119.4
C8A—C4A—C5119.74 (19)F1A—C15—F3A116.9 (12)
C8A—C4A—C4122.22 (18)F1A—C15—F2128.8 (8)
C5—C4A—C4118.03 (18)F2—C15—F1105.7 (4)
O1—C5—C4A120.7 (2)F1A—C15—F2A110.3 (11)
O1—C5—C6121.1 (2)F3A—C15—F2A102.1 (10)
C4A—C5—C6118.14 (19)F2—C15—F3104.9 (4)
C5—C6—C7113.60 (18)F1—C15—F3101.0 (3)
C5—C6—H6A108.8F1A—C15—C11115.6 (8)
C7—C6—H6A108.8F3A—C15—C11104.8 (7)
C5—C6—H6B108.8F2—C15—C11115.6 (3)
C7—C6—H6B108.8F1—C15—C11113.7 (3)
H6A—C6—H6B107.7F2A—C15—C11105.7 (8)
C17—C7—C8110.5 (2)F3—C15—C11114.5 (3)
C17—C7—C18109.9 (2)C2—N16—H16A120.0
C8—C7—C18109.12 (19)C2—N16—H16B120.0
C17—C7—C6109.5 (2)H16A—N16—H16B120.0
C8—C7—C6107.43 (18)C7—C17—H17A109.5
C18—C7—C6110.3 (2)C7—C17—H17B109.5
C8A—C8—C7112.92 (18)H17A—C17—H17B109.5
C8A—C8—H8A109.0C7—C17—H17C109.5
C7—C8—H8A109.0H17A—C17—H17C109.5
C8A—C8—H8B109.0H17B—C17—H17C109.5
C7—C8—H8B109.0C7—C18—H18A109.5
H8A—C8—H8B107.8C7—C18—H18B109.5
C4A—C8A—N1121.11 (19)H18A—C18—H18B109.5
C4A—C8A—C8123.73 (19)C7—C18—H18C109.5
N1—C8A—C8115.15 (18)H18A—C18—H18C109.5
C14—C9—C10118.1 (2)H18B—C18—H18C109.5
C14—C9—C4119.7 (2)N20—C19—C3176.9 (2)
C10—C9—C4122.06 (19)
C8A—N1—C2—N16172.0 (2)C2—N1—C8A—C4A9.3 (3)
C8A—N1—C2—C36.8 (3)C2—N1—C8A—C8169.6 (2)
N16—C2—C3—C192.7 (4)C7—C8—C8A—C4A21.7 (3)
N1—C2—C3—C19176.0 (2)C7—C8—C8A—N1159.39 (19)
N16—C2—C3—C4171.7 (2)C4A—C4—C9—C14141.8 (2)
N1—C2—C3—C49.7 (3)C3—C4—C9—C1495.0 (2)
C2—C3—C4—C4A21.0 (3)C4A—C4—C9—C1042.8 (3)
C19—C3—C4—C4A164.59 (19)C3—C4—C9—C1080.4 (2)
C2—C3—C4—C9105.2 (2)C14—C9—C10—C110.2 (3)
C19—C3—C4—C969.3 (2)C4—C9—C10—C11175.6 (2)
C3—C4—C4A—C8A18.5 (3)C9—C10—C11—C120.3 (4)
C9—C4—C4A—C8A105.2 (2)C9—C10—C11—C15178.0 (2)
C3—C4—C4A—C5160.28 (18)C10—C11—C12—C130.2 (4)
C9—C4—C4A—C576.0 (2)C15—C11—C12—C13177.5 (3)
C8A—C4A—C5—O1178.0 (2)C11—C12—C13—C140.9 (4)
C4—C4A—C5—O10.9 (3)C10—C9—C14—C130.5 (4)
C8A—C4A—C5—C60.4 (3)C4—C9—C14—C13175.1 (2)
C4—C4A—C5—C6179.2 (2)C12—C13—C14—C91.1 (4)
O1—C5—C6—C7150.7 (2)C12—C11—C15—F1A143.6 (11)
C4A—C5—C6—C731.0 (3)C10—C11—C15—F1A34.2 (11)
C5—C6—C7—C1765.5 (3)C12—C11—C15—F3A86.1 (9)
C5—C6—C7—C854.5 (3)C10—C11—C15—F3A96.1 (9)
C5—C6—C7—C18173.4 (2)C12—C11—C15—F234.1 (5)
C17—C7—C8—C8A70.0 (3)C10—C11—C15—F2148.1 (4)
C18—C7—C8—C8A169.0 (2)C12—C11—C15—F188.4 (4)
C6—C7—C8—C8A49.4 (3)C10—C11—C15—F189.3 (4)
C5—C4A—C8A—N1173.7 (2)C12—C11—C15—F2A21.3 (8)
C4—C4A—C8A—N15.1 (3)C10—C11—C15—F2A156.5 (8)
C5—C4A—C8A—C85.1 (3)C12—C11—C15—F3156.2 (3)
C4—C4A—C8A—C8176.1 (2)C10—C11—C15—F326.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.393.117 (2)143
N16—H16A···N20ii0.862.122.966 (3)168
N16—H16B···O1i0.862.082.897 (2)158
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC19H18F3N3O
Mr361.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.2434 (6), 9.6030 (2), 15.2426 (4)
β (°) 93.960 (2)
V3)3540.15 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.896, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
42194, 3469, 2462
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.143, 1.03
No. of reflections3469
No. of parameters247
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.39

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.393.117 (2)143
N16—H16A···N20ii0.862.122.966 (3)168
N16—H16B···O1i0.862.082.897 (2)158
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJiang, H., Wang, X.-S., Zhang, M.-M., Li, Y.-L. & Shi, D.-Q. (2006). Acta Cryst. E62, o1184–o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLeon, R., Rios, C., Contelles, J. M., Lopez, G. M., Garcia, A. G. & Villarroya, M. (2008). Eur. J. Med. Chem. 43, 668–674.  Web of Science PubMed CAS Google Scholar
First citationMayler, W. G. (1989). In Calcium Antagonist. London: Academic Press.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTriggle, D. J., Langs, D. A. & Jamis, R. A. (1989). Med. Res. Rev. 9, 123–180.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTu, S., Zhang, J., Zhu, X., Xu, J. & Wang, Q. (2005). Acta Cryst. E61, o983–o985.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds