[Journal logo]

Volume 69 
Part 1 
Pages o136-o137  
January 2013  

Received 12 December 2012
Accepted 17 December 2012
Online 22 December 2012

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.003 Å
Disorder in main residue
R = 0.058
wR = 0.156
Data-to-parameter ratio = 14.4
Details
Open access

1-{(Z)-[(2,3-Dihydroxypropyl)amino]methylidene}naphthalen-2(1H)-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey,bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England,cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England,dChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, and eDepartment of Chemistry, Sohag University, 82524 Sohag, Egypt
Correspondence e-mail: akkurt@erciyes.edu.tr

In the title molecule, C14H15NO3, the ring system is essentially planar, with an r.m.s. deviation of 0.003 Å. The atoms of the ethane-1,2-diol group were refined as disordered over two sets of sites in a ratio of 0.815 (3):0.185 (3). The molecular conformation is stabilized in part by an intramolecular N-H...O hydrogen bond, which forms an S(6) ring. In the crystal, molecules are connected by N-H...O and O-H...O hydrogen bonds, forming a two-dimensional network parallel to (100). The network also features weak C-H...O hydrogen bonds. Weak C-H...[pi] interactions also observed.

Related literature

For pharmaceutical and industrial applications of azomethines, see: Prakash & Adhikari (2011[Prakash, A. & Adhikari, D. (2011). Int. J. ChemTech Res. 3, 1891-1896.]). For the effect of hydrophilicity on drug properties, see: Lin & Lu (1997[Lin, J. H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403-449.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO3

  • Mr = 245.27

  • Monoclinic, P 21 /c

  • a = 23.452 (16) Å

  • b = 5.809 (4) Å

  • c = 8.739 (6) Å

  • [beta] = 96.445 (7)°

  • V = 1183.0 (14) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.10 mm-1

  • T = 100 K

  • 0.27 × 0.14 × 0.01 mm

Data collection
  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.974, Tmax = 0.999

  • 8146 measured reflections

  • 2650 independent reflections

  • 2438 reflections with I > 2[sigma](I)

  • Rint = 0.025

Refinement
  • R[F2 > 2[sigma](F2)] = 0.058

  • wR(F2) = 0.156

  • S = 1.11

  • 2650 reflections

  • 184 parameters

  • 81 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.67 e Å-3

  • [Delta][rho]min = -0.26 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C5/C10 and C5-C10 rings, respectively.

D-H...A D-H H...A D...A D-H...A
N1-H1...O1 0.88 1.87 2.560 (3) 135
N1-H1...O3Ai 0.88 2.56 3.166 (3) 127
O2A-H2A...O1ii 0.84 1.83 2.663 (3) 175
O3A-H3A...O2Aiii 0.84 1.91 2.744 (3) 169
C12-H12B...O1iv 0.99 2.60 3.174 (3) 117
C4-H4...Cg2v 0.95 2.79 3.491 (3) 132
C9-H9...Cg1iv 0.95 2.77 3.510 (3) 135
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5572 ).


Acknowledgements

This work was supported by the Ministry of Higher Education of Egypt under the collaporative PhD program 2012. The EPSRC National Crystallography Service is gratefully acknowledged for the X-ray diffraction measurementss. The authors are thankful to Manchester Metropolitan University, Sohag University and Erciyes Universitry for supporting this study.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [ISI]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Lin, J. H. & Lu, A. Y. H. (1997). Pharmacol. Rev. 49, 403-449.  [ChemPort] [PubMed]
Prakash, A. & Adhikari, D. (2011). Int. J. ChemTech Res. 3, 1891-1896.
Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]


Acta Cryst (2013). E69, o136-o137   [ doi:10.1107/S1600536812051070 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.