supplementary materials


lr2090 scheme

Acta Cryst. (2013). E69, m58    [ doi:10.1107/S1600536812050234 ]

Tris(2,2'-bipyridine-[kappa]2N,N')cobalt(II) bis(hexafluoridophosphate)

A. Mentes and K. Singh

Abstract top

In the title compound, [Co(C10H8N2)3](PF6)2, the CoII atom is coordinated by the six N atoms of three 2,2'-bipyridyl ligands and adopts a highly distorted octahedral geometry. The crystal used was a merohedral twin, the refined ratio of twin components being 0.820 (1):0.180 (1). The crystal structure features weak C-H...F interactions, forming a three-dimensional network.

Comment top

The reaction of Cobalt(II) pentafluoropropionate with NaPF6 in the presence of 2,2'-bipyridine yields the coordination compound tris(bipyridine)cobalt(II) hexafluorophosphate (1), [Co(bipy)3][PF6]2. Crystals were grown by allowing slow evaporation of the complex in ethanol. The title complex crystallizes in the space group P3(2) in contrast to the related compound [Co(bipy)3][Mo6O19]2 which crystallizes in P21/n (Liu et al., 2010). The structure of (1) is shown in Fig. 1. Within the divalent complex cations, the cobalt atoms are each surrounded by six N atoms of three chelating bipy ligands to complete a distorted octahedral coordination with d(Co—N) = 2.098 (7) – 2.149 (8) Å, the cis and trans N—Co—N bond angles in the range 76.6 (3) – 96.9 (3) and 167.6 (3) – 170.5 (3)°, respectively. Such distances are similar to those found in other related structures (Liu et al., 2008, Chygorin et al. 2012). There has been great interest in homoleptic imine complexes, because of great potential applications in many fields such as, catalysis, material science and medicine. The crystal packing of the title compound is presented in Fig. 2. The crystal structure is stabilized by weak intermolecular C—H···F bonds.

Related literature top

For related structures, see: Chygorin et al. (2012); Liu et al. (2008, 2010).

Experimental top

Tris(bipyridine)cobalt(II) hexafluorophosphate was prepared by stirring a mixture of a solution containing Co(O2CC2F5)2 (0.100 g, 0.25 mmol) and bipyridine (0.120 g, 0.77 mmol) in ethanol (10 ml). The reaction mixture was stirred for 2 h. After this time NaPF6 (0.100 g, 0.59 mmol) was added and stirred for 1 h. Solid of title compound was obtained by slow evaporation of an ethanol solution in refrigerator (Yield 0.150 g, 79%; m.p. 594 K). Yellow block crystals were obtained in acetonitrile/ethanol (1:1) solution after few days. ATR-IR: 1603 ν(C=N), 1566 ν(C=C) cm-1.

Refinement top

Hydrogen atoms were included in calculated positions (C—H = 0.95 Å) riding on the bonded atom with isotropic displacement parameters set to 1.2Ueq(C) for all hydrogen atoms. All non-H atoms were refined with anisotropic displacement ellipsoids. Merohedral twinning is indicated and applying the twin instruction [TWIN 0 1 0, 1 0 0, 0 0 - 1] with a BASF parameter in SHELXTL (Sheldrick, 2008), the R1 value drops to 0.049 (0.0886 without TWIN Instruction) and wR2 value drops to 0.0883 (0.2284 without TWIN instruction).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound.
Tris(2,2'-bipyridine-κ2N,N')cobalt(II) bis(hexafluoridophosphate) top
Crystal data top
[Co(C10H8N2)3](PF6)2Dx = 1.678 Mg m3
Mr = 817.42Melting point: 594 K
Trigonal, P32Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 32Cell parameters from 812 reflections
a = 10.3524 (18) Åθ = 2.3–28.2°
c = 26.140 (6) ŵ = 0.73 mm1
V = 2426.2 (8) Å3T = 150 K
Z = 3Needle, yellow
F(000) = 12330.35 × 0.16 × 0.13 mm
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
6285 independent reflections
Radiation source: fine-focus sealed tube5344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
phi and ω scansθmax = 26.0°, θmin = 0.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.581, Tmax = 0.862k = 1212
19252 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0279P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.002
6285 reflectionsΔρmax = 0.30 e Å3
461 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), 3114 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.010 (18)
Crystal data top
[Co(C10H8N2)3](PF6)2Z = 3
Mr = 817.42Mo Kα radiation
Trigonal, P32µ = 0.73 mm1
a = 10.3524 (18) ÅT = 150 K
c = 26.140 (6) Å0.35 × 0.16 × 0.13 mm
V = 2426.2 (8) Å3
Data collection top
Bruker APEX 2000 CCD area-detector
diffractometer
6285 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5344 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.862Rint = 0.087
19252 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.30 e Å3
S = 0.94Δρmin = 0.31 e Å3
6285 reflectionsAbsolute structure: Flack (1983), 3114 Friedel pairs
461 parametersFlack parameter: 0.010 (18)
1 restraint
Special details top

Experimental. SADABS (Bruker, 2005). Absorption correction based on 7715 reflections;Rint 0.1489 before correction and 0.0570 after.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.31501 (7)0.63587 (6)0.16543 (3)0.02682 (14)
N10.5410 (4)0.7831 (4)0.18887 (15)0.0288 (9)
N20.4286 (4)0.5271 (4)0.13828 (15)0.0286 (9)
N30.2500 (4)0.5252 (4)0.23714 (14)0.0278 (9)
N40.2286 (4)0.7570 (4)0.20398 (14)0.0270 (9)
N50.1048 (4)0.4858 (4)0.13110 (14)0.0285 (9)
N60.3326 (4)0.7329 (4)0.09234 (14)0.0321 (9)
C10.5893 (5)0.9086 (5)0.21651 (19)0.0322 (11)
H10.52200.94400.22290.039*
C20.7309 (5)0.9875 (6)0.23577 (18)0.0339 (12)
H20.76171.07560.25520.041*
C30.8278 (6)0.9347 (6)0.22598 (19)0.0426 (13)
H30.92650.98530.23920.051*
C40.7788 (6)0.8074 (6)0.19675 (19)0.0394 (13)
H40.84430.77030.18950.047*
C50.6371 (5)0.7354 (5)0.17835 (17)0.0270 (10)
C60.5765 (5)0.5992 (5)0.14565 (17)0.0271 (10)
C70.6663 (6)0.5535 (6)0.12261 (19)0.0353 (11)
H70.77110.60790.12790.042*
C80.6041 (6)0.4286 (6)0.0919 (2)0.0411 (13)
H80.66530.39810.07470.049*
C90.4511 (6)0.3490 (6)0.0865 (2)0.0374 (13)
H90.40420.25930.06710.045*
C100.3682 (5)0.4021 (5)0.10954 (18)0.0348 (12)
H100.26300.34830.10510.042*
C110.2541 (6)0.4024 (5)0.24997 (19)0.0365 (13)
H110.31110.37310.22960.044*
C120.1780 (6)0.3163 (5)0.2920 (2)0.0383 (13)
H120.18450.23070.30070.046*
C130.0928 (6)0.3568 (6)0.3209 (2)0.0452 (14)
H130.03660.29740.34910.054*
C140.0903 (6)0.4854 (6)0.3082 (2)0.0425 (13)
H140.03320.51620.32780.051*
C150.1714 (5)0.5678 (5)0.26678 (17)0.0282 (10)
C160.1795 (5)0.7093 (5)0.25162 (18)0.0286 (11)
C170.1413 (6)0.7889 (6)0.2842 (2)0.0392 (13)
H170.10330.75190.31740.047*
C180.1594 (7)0.9260 (6)0.2675 (2)0.0486 (15)
H180.13960.98620.29000.058*
C190.2056 (6)0.9712 (6)0.2188 (2)0.0395 (13)
H190.21441.06130.20620.047*
C200.2391 (5)0.8847 (5)0.18840 (19)0.0312 (11)
H200.27160.91710.15440.037*
C210.0026 (5)0.3604 (6)0.1512 (2)0.0385 (12)
H210.00530.34070.18620.046*
C220.1253 (6)0.2570 (6)0.1241 (2)0.0435 (14)
H220.19990.16830.14000.052*
C230.1365 (6)0.2856 (6)0.0737 (2)0.0456 (14)
H230.21780.21510.05360.055*
C240.0301 (6)0.4160 (6)0.0526 (2)0.0405 (13)
H240.03910.43840.01800.049*
C250.0928 (5)0.5172 (6)0.08174 (19)0.0302 (11)
C260.2129 (5)0.6598 (5)0.06185 (18)0.0305 (11)
C270.2036 (6)0.7188 (6)0.01585 (19)0.0425 (14)
H270.11680.66700.00470.051*
C280.3202 (7)0.8532 (6)0.0003 (2)0.0453 (14)
H280.31440.89530.03200.054*
C290.4451 (6)0.9257 (6)0.0299 (2)0.0438 (14)
H290.52861.01730.01930.053*
C300.4453 (6)0.8611 (6)0.07615 (19)0.0391 (13)
H300.53070.91130.09740.047*
P10.6353 (2)0.34156 (18)0.26409 (5)0.0455 (4)
F10.7904 (4)0.4131 (6)0.23794 (18)0.1132 (18)
F20.6499 (10)0.2092 (8)0.2842 (2)0.210 (4)
F30.7010 (5)0.4240 (6)0.31495 (16)0.1132 (18)
F40.4748 (5)0.2696 (4)0.29142 (15)0.0856 (13)
F50.6100 (5)0.4687 (5)0.24542 (17)0.0983 (15)
F60.5659 (6)0.2568 (6)0.21402 (18)0.147 (2)
P20.03045 (17)0.98203 (18)0.07188 (5)0.0404 (4)
F70.1988 (3)1.0180 (4)0.06828 (15)0.0606 (10)
F80.0149 (4)0.8242 (4)0.09591 (15)0.0720 (12)
F90.0629 (4)1.0539 (3)0.12771 (11)0.0566 (9)
F100.1379 (3)0.9457 (4)0.07615 (14)0.0608 (10)
F110.0790 (4)1.1424 (3)0.04879 (12)0.0582 (9)
F120.0020 (4)0.9120 (4)0.01613 (13)0.0643 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0283 (4)0.0289 (3)0.0231 (3)0.0142 (3)0.0001 (3)0.0007 (3)
N10.030 (2)0.028 (2)0.026 (2)0.0130 (19)0.0016 (17)0.0015 (17)
N20.031 (2)0.029 (2)0.026 (2)0.0143 (19)0.0033 (18)0.0013 (18)
N30.032 (2)0.029 (2)0.024 (2)0.0158 (19)0.0067 (18)0.0026 (17)
N40.027 (2)0.029 (2)0.027 (2)0.0162 (18)0.0002 (17)0.0004 (18)
N50.027 (2)0.033 (2)0.026 (2)0.0156 (19)0.0062 (17)0.0019 (18)
N60.033 (2)0.034 (2)0.029 (2)0.017 (2)0.0004 (18)0.0030 (18)
C10.037 (3)0.033 (3)0.031 (3)0.020 (2)0.003 (2)0.002 (2)
C20.036 (3)0.031 (3)0.027 (3)0.010 (2)0.003 (2)0.003 (2)
C30.032 (3)0.054 (4)0.036 (3)0.017 (3)0.004 (2)0.008 (3)
C40.032 (3)0.049 (3)0.040 (3)0.023 (3)0.003 (2)0.007 (3)
C50.035 (3)0.026 (2)0.021 (2)0.016 (2)0.001 (2)0.001 (2)
C60.031 (3)0.026 (3)0.022 (3)0.012 (2)0.000 (2)0.001 (2)
C70.036 (3)0.035 (3)0.037 (3)0.020 (3)0.000 (2)0.003 (2)
C80.039 (3)0.041 (3)0.047 (3)0.023 (3)0.010 (3)0.003 (3)
C90.043 (3)0.031 (3)0.038 (3)0.018 (3)0.001 (2)0.005 (2)
C100.027 (3)0.030 (3)0.040 (3)0.008 (2)0.002 (2)0.003 (2)
C110.041 (3)0.031 (3)0.040 (3)0.020 (2)0.000 (2)0.003 (2)
C120.047 (3)0.026 (3)0.041 (3)0.018 (3)0.002 (3)0.006 (2)
C130.061 (4)0.042 (3)0.032 (3)0.026 (3)0.007 (3)0.010 (3)
C140.054 (3)0.050 (3)0.032 (3)0.032 (3)0.012 (3)0.008 (3)
C150.032 (2)0.031 (3)0.022 (2)0.016 (2)0.003 (2)0.001 (2)
C160.022 (2)0.030 (3)0.030 (3)0.010 (2)0.002 (2)0.003 (2)
C170.059 (4)0.046 (3)0.025 (3)0.036 (3)0.007 (3)0.010 (3)
C180.072 (4)0.053 (4)0.044 (4)0.049 (3)0.001 (3)0.004 (3)
C190.052 (3)0.037 (3)0.040 (3)0.030 (3)0.005 (3)0.001 (3)
C200.030 (3)0.032 (3)0.030 (3)0.014 (2)0.001 (2)0.006 (2)
C210.028 (3)0.044 (3)0.037 (3)0.014 (3)0.002 (2)0.002 (2)
C220.034 (3)0.041 (3)0.044 (3)0.009 (3)0.004 (2)0.004 (3)
C230.030 (3)0.050 (4)0.045 (4)0.011 (3)0.008 (3)0.004 (3)
C240.044 (3)0.052 (4)0.028 (3)0.026 (3)0.009 (2)0.003 (3)
C250.027 (3)0.036 (3)0.030 (3)0.018 (2)0.002 (2)0.003 (2)
C260.033 (3)0.038 (3)0.028 (3)0.023 (2)0.000 (2)0.004 (2)
C270.052 (4)0.053 (4)0.025 (3)0.028 (3)0.001 (3)0.005 (3)
C280.056 (4)0.055 (4)0.028 (3)0.030 (3)0.006 (3)0.010 (3)
C290.054 (4)0.045 (3)0.032 (3)0.025 (3)0.012 (3)0.008 (2)
C300.045 (3)0.042 (3)0.024 (3)0.017 (3)0.002 (2)0.002 (2)
P10.0655 (11)0.0525 (10)0.0310 (9)0.0388 (9)0.0047 (7)0.0015 (7)
F10.064 (3)0.187 (5)0.088 (3)0.062 (3)0.025 (2)0.003 (3)
F20.424 (12)0.227 (7)0.152 (5)0.293 (9)0.170 (7)0.125 (5)
F30.094 (3)0.200 (5)0.047 (2)0.075 (4)0.028 (2)0.044 (3)
F40.089 (3)0.077 (3)0.074 (3)0.029 (2)0.034 (2)0.009 (2)
F50.126 (4)0.107 (4)0.101 (3)0.087 (3)0.032 (3)0.055 (3)
F60.148 (5)0.124 (4)0.074 (3)0.004 (4)0.016 (3)0.057 (3)
P20.0351 (8)0.0404 (8)0.0340 (8)0.0101 (6)0.0021 (6)0.0015 (7)
F70.0390 (19)0.050 (2)0.081 (3)0.0129 (16)0.0036 (18)0.0054 (18)
F80.073 (3)0.0357 (19)0.087 (3)0.0123 (18)0.017 (2)0.0097 (18)
F90.067 (2)0.056 (2)0.0326 (17)0.0197 (18)0.0080 (15)0.0012 (14)
F100.0332 (17)0.068 (2)0.066 (2)0.0142 (17)0.0034 (16)0.0194 (19)
F110.072 (2)0.0511 (19)0.0422 (19)0.0244 (19)0.0013 (18)0.0096 (16)
F120.060 (2)0.072 (2)0.048 (2)0.0230 (19)0.0049 (17)0.0207 (19)
Geometric parameters (Å, º) top
Co1—N22.117 (4)C14—C151.374 (7)
Co1—N32.123 (4)C14—H140.9500
Co1—N62.124 (4)C15—C161.479 (6)
Co1—N42.124 (4)C16—C171.374 (7)
Co1—N52.139 (4)C17—C181.405 (7)
Co1—N12.146 (4)C17—H170.9500
N1—C51.342 (6)C18—C191.357 (7)
N1—C11.345 (6)C18—H180.9500
N2—C61.340 (6)C19—C201.366 (7)
N2—C101.349 (6)C19—H190.9500
N3—C111.336 (6)C20—H200.9500
N3—C151.347 (6)C21—C221.379 (7)
N4—C201.335 (6)C21—H210.9500
N4—C161.342 (6)C22—C231.367 (7)
N5—C211.324 (6)C22—H220.9500
N5—C251.352 (6)C23—C241.362 (7)
N6—C301.324 (6)C23—H230.9500
N6—C261.344 (6)C24—C251.402 (7)
C1—C21.368 (6)C24—H240.9500
C1—H10.9500C25—C261.469 (7)
C2—C31.385 (7)C26—C271.374 (6)
C2—H20.9500C27—C281.375 (7)
C3—C41.382 (7)C27—H270.9500
C3—H30.9500C28—C291.374 (8)
C4—C51.359 (6)C28—H280.9500
C4—H40.9500C29—C301.383 (7)
C5—C61.493 (6)C29—H290.9500
C6—C71.374 (6)C30—H300.9500
C7—C81.378 (7)P1—F61.539 (5)
C7—H70.9500P1—F31.542 (4)
C8—C91.380 (7)P1—F21.544 (5)
C8—H80.9500P1—F51.545 (4)
C9—C101.368 (7)P1—F11.551 (4)
C9—H90.9500P1—F41.609 (4)
C10—H100.9500P2—F121.587 (4)
C11—C121.386 (7)P2—F81.587 (4)
C11—H110.9500P2—F101.592 (3)
C12—C131.376 (7)P2—F71.592 (4)
C12—H120.9500P2—F111.594 (4)
C13—C141.385 (7)P2—F91.596 (3)
C13—H130.9500
N2—Co1—N396.86 (15)C14—C15—C16122.7 (4)
N2—Co1—N690.63 (15)N4—C16—C17121.6 (4)
N3—Co1—N6168.13 (15)N4—C16—C15115.9 (4)
N2—Co1—N4169.58 (15)C17—C16—C15122.5 (4)
N3—Co1—N477.66 (14)C16—C17—C18118.7 (5)
N6—Co1—N496.28 (15)C16—C17—H17120.6
N2—Co1—N596.15 (15)C18—C17—H17120.6
N3—Co1—N592.62 (14)C19—C18—C17119.0 (5)
N6—Co1—N577.38 (15)C19—C18—H18120.5
N4—Co1—N592.97 (14)C17—C18—H18120.5
N2—Co1—N177.02 (15)C18—C19—C20118.8 (5)
N3—Co1—N194.01 (14)C18—C19—H19120.6
N6—Co1—N196.65 (15)C20—C19—H19120.6
N4—Co1—N194.39 (15)N4—C20—C19123.3 (5)
N5—Co1—N1171.00 (15)N4—C20—H20118.3
C5—N1—C1118.6 (4)C19—C20—H20118.3
C5—N1—Co1115.2 (3)N5—C21—C22123.6 (5)
C1—N1—Co1125.9 (3)N5—C21—H21118.2
C6—N2—C10117.8 (4)C22—C21—H21118.2
C6—N2—Co1116.1 (3)C23—C22—C21118.1 (5)
C10—N2—Co1125.6 (3)C23—C22—H22120.9
C11—N3—C15118.6 (4)C21—C22—H22120.9
C11—N3—Co1125.6 (3)C24—C23—C22119.5 (5)
C15—N3—Co1114.3 (3)C24—C23—H23120.3
C20—N4—C16118.4 (4)C22—C23—H23120.3
C20—N4—Co1126.2 (3)C23—C24—C25120.1 (5)
C16—N4—Co1114.6 (3)C23—C24—H24119.9
C21—N5—C25118.8 (4)C25—C24—H24119.9
C21—N5—Co1126.6 (3)N5—C25—C24119.8 (4)
C25—N5—Co1114.1 (3)N5—C25—C26116.5 (4)
C30—N6—C26118.5 (4)C24—C25—C26123.7 (5)
C30—N6—Co1125.9 (3)N6—C26—C27121.2 (5)
C26—N6—Co1115.5 (3)N6—C26—C25115.8 (4)
N1—C1—C2123.0 (5)C27—C26—C25123.0 (5)
N1—C1—H1118.5C26—C27—C28119.9 (5)
C2—C1—H1118.5C26—C27—H27120.1
C1—C2—C3117.9 (5)C28—C27—H27120.1
C1—C2—H2121.1C29—C28—C27119.1 (5)
C3—C2—H2121.1C29—C28—H28120.5
C4—C3—C2119.1 (5)C27—C28—H28120.5
C4—C3—H3120.5C28—C29—C30117.8 (5)
C2—C3—H3120.5C28—C29—H29121.1
C5—C4—C3120.0 (5)C30—C29—H29121.1
C5—C4—H4120.0N6—C30—C29123.4 (5)
C3—C4—H4120.0N6—C30—H30118.3
N1—C5—C4121.4 (4)C29—C30—H30118.3
N1—C5—C6115.3 (4)F6—P1—F3178.5 (3)
C4—C5—C6123.3 (4)F6—P1—F290.5 (4)
N2—C6—C7121.7 (4)F3—P1—F289.2 (4)
N2—C6—C5115.6 (4)F6—P1—F589.3 (3)
C7—C6—C5122.6 (4)F3—P1—F590.9 (3)
C6—C7—C8119.9 (5)F2—P1—F5176.2 (4)
C6—C7—H7120.0F6—P1—F188.5 (3)
C8—C7—H7120.0F3—P1—F192.9 (3)
C7—C8—C9118.6 (5)F2—P1—F192.1 (4)
C7—C8—H8120.7F5—P1—F191.7 (3)
C9—C8—H8120.7F6—P1—F491.9 (3)
C10—C9—C8118.6 (5)F3—P1—F486.6 (2)
C10—C9—H9120.7F2—P1—F488.6 (3)
C8—C9—H9120.7F5—P1—F487.6 (2)
N2—C10—C9123.2 (5)F1—P1—F4179.2 (3)
N2—C10—H10118.4F12—P2—F890.4 (2)
C9—C10—H10118.4F12—P2—F1090.0 (2)
N3—C11—C12122.2 (5)F8—P2—F1090.2 (2)
N3—C11—H11118.9F12—P2—F790.5 (2)
C12—C11—H11118.9F8—P2—F789.4 (2)
C13—C12—C11119.0 (5)F10—P2—F7179.4 (2)
C13—C12—H12120.5F12—P2—F1190.7 (2)
C11—C12—H12120.5F8—P2—F11178.6 (2)
C12—C13—C14118.9 (5)F10—P2—F1190.6 (2)
C12—C13—H13120.5F7—P2—F1189.8 (2)
C14—C13—H13120.5F12—P2—F9179.4 (2)
C15—C14—C13119.1 (5)F8—P2—F990.2 (2)
C15—C14—H14120.5F10—P2—F989.79 (19)
C13—C14—H14120.5F7—P2—F989.68 (19)
N3—C15—C14122.1 (4)F11—P2—F988.70 (19)
N3—C15—C16115.2 (4)
N2—Co1—N1—C53.2 (3)C10—N2—C6—C73.6 (7)
N3—Co1—N1—C592.9 (3)Co1—N2—C6—C7169.0 (4)
N6—Co1—N1—C592.3 (3)C10—N2—C6—C5179.1 (4)
N4—Co1—N1—C5170.8 (3)Co1—N2—C6—C58.2 (5)
N2—Co1—N1—C1176.9 (4)N1—C5—C6—N211.1 (6)
N3—Co1—N1—C180.8 (4)C4—C5—C6—N2168.7 (5)
N6—Co1—N1—C194.0 (4)N1—C5—C6—C7166.1 (4)
N4—Co1—N1—C12.9 (4)C4—C5—C6—C714.1 (7)
N3—Co1—N2—C695.6 (3)N2—C6—C7—C81.4 (7)
N6—Co1—N2—C693.7 (3)C5—C6—C7—C8178.4 (4)
N4—Co1—N2—C638.0 (10)C6—C7—C8—C92.3 (7)
N5—Co1—N2—C6171.0 (3)C7—C8—C9—C103.6 (8)
N1—Co1—N2—C63.0 (3)C6—N2—C10—C92.2 (7)
N3—Co1—N2—C1092.5 (4)Co1—N2—C10—C9169.6 (4)
N6—Co1—N2—C1078.3 (4)C8—C9—C10—N21.4 (8)
N4—Co1—N2—C10150.0 (7)C15—N3—C11—C121.3 (7)
N5—Co1—N2—C100.9 (4)Co1—N3—C11—C12164.1 (4)
N1—Co1—N2—C10175.0 (4)N3—C11—C12—C131.4 (8)
N2—Co1—N3—C1114.2 (4)C11—C12—C13—C142.4 (8)
N6—Co1—N3—C11114.6 (8)C12—C13—C14—C150.8 (8)
N4—Co1—N3—C11174.8 (4)C11—N3—C15—C143.0 (7)
N5—Co1—N3—C1182.4 (4)Co1—N3—C15—C14164.0 (4)
N1—Co1—N3—C1191.5 (4)C11—N3—C15—C16176.7 (4)
N2—Co1—N3—C15179.9 (3)Co1—N3—C15—C1616.3 (5)
N6—Co1—N3—C1551.3 (9)C13—C14—C15—N32.0 (8)
N4—Co1—N3—C158.9 (3)C13—C14—C15—C16177.7 (5)
N5—Co1—N3—C1583.6 (3)C20—N4—C16—C170.3 (7)
N1—Co1—N3—C15102.5 (3)Co1—N4—C16—C17170.2 (4)
N2—Co1—N4—C20111.0 (8)C20—N4—C16—C15179.5 (4)
N3—Co1—N4—C20170.1 (4)Co1—N4—C16—C159.1 (5)
N6—Co1—N4—C2020.3 (4)N3—C15—C16—N417.1 (6)
N5—Co1—N4—C2097.9 (4)C14—C15—C16—N4163.2 (5)
N1—Co1—N4—C2076.9 (4)N3—C15—C16—C17162.1 (4)
N2—Co1—N4—C1658.6 (9)C14—C15—C16—C1717.6 (7)
N3—Co1—N4—C160.5 (3)N4—C16—C17—C182.3 (8)
N6—Co1—N4—C16170.2 (3)C15—C16—C17—C18176.9 (5)
N5—Co1—N4—C1692.5 (3)C16—C17—C18—C193.9 (9)
N1—Co1—N4—C1692.7 (3)C17—C18—C19—C202.8 (9)
N2—Co1—N5—C2187.5 (4)C16—N4—C20—C191.4 (7)
N3—Co1—N5—C219.7 (4)Co1—N4—C20—C19167.8 (4)
N6—Co1—N5—C21176.8 (4)C18—C19—C20—N40.2 (8)
N4—Co1—N5—C2187.5 (4)C25—N5—C21—C221.9 (7)
N2—Co1—N5—C2584.1 (3)Co1—N5—C21—C22169.4 (4)
N3—Co1—N5—C25178.7 (3)N5—C21—C22—C230.0 (8)
N6—Co1—N5—C255.2 (3)C21—C22—C23—C242.1 (8)
N4—Co1—N5—C25100.9 (3)C22—C23—C24—C252.4 (8)
N2—Co1—N6—C3088.2 (4)C21—N5—C25—C241.5 (7)
N3—Co1—N6—C30142.5 (7)Co1—N5—C25—C24170.8 (4)
N4—Co1—N6—C3084.0 (4)C21—N5—C25—C26178.3 (4)
N5—Co1—N6—C30175.7 (4)Co1—N5—C25—C269.4 (5)
N1—Co1—N6—C3011.1 (4)C23—C24—C25—N50.6 (7)
N2—Co1—N6—C2696.2 (3)C23—C24—C25—C26179.6 (5)
N3—Co1—N6—C2633.1 (9)C30—N6—C26—C272.9 (7)
N4—Co1—N6—C2691.6 (3)Co1—N6—C26—C27173.1 (4)
N5—Co1—N6—C260.1 (3)C30—N6—C26—C25179.1 (4)
N1—Co1—N6—C26173.2 (3)Co1—N6—C26—C254.9 (5)
C5—N1—C1—C22.1 (7)N5—C25—C26—N69.7 (6)
Co1—N1—C1—C2171.4 (4)C24—C25—C26—N6170.5 (5)
N1—C1—C2—C30.2 (7)N5—C25—C26—C27168.3 (5)
C1—C2—C3—C41.1 (8)C24—C25—C26—C2711.5 (7)
C2—C3—C4—C50.4 (8)N6—C26—C27—C281.9 (8)
C1—N1—C5—C42.8 (7)C25—C26—C27—C28179.8 (5)
Co1—N1—C5—C4171.4 (4)C26—C27—C28—C290.5 (8)
C1—N1—C5—C6177.5 (4)C27—C28—C29—C301.8 (8)
Co1—N1—C5—C68.3 (5)C26—N6—C30—C291.5 (7)
C3—C4—C5—N11.5 (8)Co1—N6—C30—C29174.0 (4)
C3—C4—C5—C6178.7 (4)C28—C29—C30—N60.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···F2i0.952.493.324 (7)146
C23—H23···F4i0.952.553.253 (7)131
C18—H18···F11ii0.952.523.149 (6)124
C13—H13···F10iii0.952.503.208 (6)131
C10—H10···F11iv0.952.513.265 (6)137
C9—H9···F7iv0.952.333.136 (6)142
C7—H7···F8v0.952.383.160 (7)139
C2—H2···F2vi0.952.333.081 (7)136
Symmetry codes: (i) y, xy, z1/3; (ii) x+y1, x+1, z+1/3; (iii) x+y1, x, z+1/3; (iv) x, y1, z; (v) x+1, y, z; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···F2i0.952.493.324 (7)145.9
C23—H23···F4i0.952.553.253 (7)131.4
C18—H18···F11ii0.952.523.149 (6)123.8
C13—H13···F10iii0.952.503.208 (6)131.2
C10—H10···F11iv0.952.513.265 (6)137.0
C9—H9···F7iv0.952.333.136 (6)141.8
C7—H7···F8v0.952.383.160 (7)139.2
C2—H2···F2vi0.952.333.081 (7)135.7
Symmetry codes: (i) y, xy, z1/3; (ii) x+y1, x+1, z+1/3; (iii) x+y1, x, z+1/3; (iv) x, y1, z; (v) x+1, y, z; (vi) x, y+1, z.
Acknowledgements top

The authors are grateful to Leicester University for the use of the X-ray diffractometer.

references
References top

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chygorin, E. N., Petrusenko, S. R., Kokozay, V. N., Omelchenko, I. V. & Shishkin, O. V. (2012). Acta Cryst. E68, m233–m234.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Liu, W., Xu, W., Lin, J.-L. & Xie, H.-Z. (2008). Acta Cryst. E64, m1586.

Liu, Y., Zhang, X., Xue, Z. & Sheng, J. (2010). Acta Cryst. E66, m756–m757.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.