[Journal logo]

Volume 69 
Part 1 
Pages m54-m55  
January 2013  

Received 6 December 2012
Accepted 11 December 2012
Online 15 December 2012

Key indicators
Single-crystal X-ray study
T = 120 K
Mean [sigma](C-C) = 0.006 Å
R = 0.048
wR = 0.138
Data-to-parameter ratio = 19.1
Details
Open access

The mixed-valent copper thiolate complex hexakis{[mu]3-2-[(1,3-dimethylimidazolidene)amino]benzenethiolato}dicopper(II)tetracopper(I) bis(hexafluoridophosphate) acetonitrile disolvate dichloromethane disolvate

aUniversität Paderborn, Fakultät für Naturwissenschaften, Department Chemie, Warburger Strasse 100, 33098 Paderborn
Correspondence e-mail: ulrich.floerke@upb.de

The molecular structure of the title compound, [Cu4ICu2II(C11H14N3S)6](PF6)2·2CH3CN·2CH2Cl2, shows a mixed-valent copper(I/II) thiolate complex with a distorted tetrahedral coordination of the CuI and CuII cations by one guanidine N atom and three S atoms each. Characteristic features of the Cu6S6 skeleton are a total of six chemically identical [mu]3-thiolate bridges and almost planar Cu2S2 units with a maximum deviation of 0.110 (1) Å from the best plane. Each Cu2S2 unit then shares common Cu-S edges with a neighbouring unit; the enclosed dihedral angle is 60.14 (2)°. The geometric centre of the Cu6S6 cation lies on a crystallographic inversion centre. Cu-S bond lengths range from 2.294 (1) to 2.457 (1) Å, Cu-N bond lengths from 2.005 (3) to 2.018 (3) Å and the non-bonding Cu...Cu distances from 2.5743 (7) to 2.5892 (6) Å. C-H...F hydrogen-bond interactions occur between the PF6- anion and the complex molecule and between the PF6- anion and the acetonitrile solvent molecule.

Related literature

For bifunctional peralkylated guanidine ligands, see: Bienemann et al. (2011[Bienemann, O., Hoffmann, A. & Herres-Pawlis, S. (2011). Rev. Inorg. Chem. 31, 83-108.]); Börner et al. (2009[Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362-2376.]); Herres-Pawlis et al. (2005[Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.], 2009[Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154-1169.]); Neuba et al. (2008[Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511-2517.], 2010[Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641-2649.]); Pohl et al. (2000[Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.]); Raab et al. (2003[Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790-8797.]); Wittmann et al. (2001[Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.]). This investigation is part of our work towards bi- and polyfunctional guanidine-sulfur hybrids to mimic the structural and physical, as well as functional characteristics of the CuA center in cytochrom c oxidase and N2O reductase, see: Neuba et al. (2011[Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. 123, 4596-4600.], 2012[Neuba, A., Haase, R. U., Meyer-Klaucke, W., Flörke, U. & Henkel, G. (2012). Angew. Chem. 124, 1746-1750.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu6(C11H14N3S)6](PF6)2·2C2H3N·2CH2Cl2

  • Mr = 2245.01

  • Triclinic, [P \overline 1]

  • a = 13.019 (2) Å

  • b = 13.687 (3) Å

  • c = 13.875 (3) Å

  • [alpha] = 108.371 (4)°

  • [beta] = 94.768 (4)°

  • [gamma] = 102.691 (4)°

  • V = 2257.8 (7) Å3

  • Z = 1

  • Mo K[alpha] radiation

  • [mu] = 1.76 mm-1

  • T = 120 K

  • 0.44 × 0.38 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.512, Tmax = 0.668

  • 18315 measured reflections

  • 10640 independent reflections

  • 8260 reflections with I > 2[sigma](I)

  • Rint = 0.031

Refinement
  • R[F2 > 2[sigma](F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.03

  • 10640 reflections

  • 557 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.97 e Å-3

  • [Delta][rho]min = -0.90 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C31-H31A...F6i 0.95 2.49 3.290 (5) 141
C102-H10F...F4ii 0.98 2.43 3.173 (6) 133
C102-H10E...F1iii 0.98 2.44 3.187 (7) 133
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2037 ).


Acknowledgements

We thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continuous support of our work.

References

Bienemann, O., Hoffmann, A. & Herres-Pawlis, S. (2011). Rev. Inorg. Chem. 31, 83-108.  [CrossRef]
Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362-2376.  [PubMed]
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.  [CSD] [CrossRef]
Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154-1169.  [ISI] [PubMed] [ChemPort]
Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. 123, 4596-4600.  [CrossRef]
Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511-2517.  [CSD] [CrossRef] [ChemPort]
Neuba, A., Haase, R. U., Meyer-Klaucke, W., Flörke, U. & Henkel, G. (2012). Angew. Chem. 124, 1746-1750.  [CrossRef]
Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641-2649.  [CSD] [CrossRef] [ChemPort]
Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.  [CrossRef]
Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790-8797.  [CSD] [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.  [CrossRef]


Acta Cryst (2013). E69, m54-m55   [ doi:10.1107/S1600536812050428 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.