[Journal logo]

Volume 69 
Part 1 
Page m45  
January 2013  

Received 16 March 2012
Accepted 27 November 2012
Online 12 December 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.004 Å
R = 0.024
wR = 0.068
Data-to-parameter ratio = 14.2
Details
Open access

[[mu]-N1,N2-Bis(pyridin-2-yl)hydrazine-1,2-dicarbothioamidato]bis[chloridocopper(II)]

aCollege of Chemistry and Material Science, South-Central University for Nationalities, Wuhan, Hubei 430074, People's Republic of China
Correspondence e-mail: zhangbg68@yahoo.com

The binuclear title compound, [Cu2(C12H10N6S2)Cl2], possesses twofold rotational symmetry. The CuII atom occupies a four-coordinate pseudo-tetrahedral environment bound to one S atom, one imine N atom and one pyridine N atom from the N1,N2-bis(pyridin-2-yl)hydrazine-1,2-dicarbothioamidate ligand, and one Cl- anion. The metal atoms are connected via the bis-tridentate ligand into a binuclear structure. The molecule is bow-shaped with the pyridine rings inclined to one another by 51.56 (14)°. In the crystal, N-H...Cl hydrogen bonds lead to the formation of ribbons propagating along [001]. These ribbons are connected via C-H...Cl, C-H...S and [pi]-[pi] interactions [centroid-centroid distance = 3.6146 (19) Å], leading to the formation of a three-dimensional structure.

Related literature

For the biological activity of thiosemicarbazides and their metal complexes, see: West et al. (1993[West, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yerande, R. G. (1993). Coord. Chem. Rev. 123, 49-71.]). For related structures, see: Wang et al. (2011[Wang, H. Y., Zhao, P. S., Song, J. & Li, R. Q. (2011). J. Chem. Crystallogr. 41, 379-385.]); Yamin & Yusof (2003[Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o358-o359.]); Akinchan et al. (2002[Akinchan, N. T., Drozdzewski, P. M. & Battagli, L. P. (2002). J. Chem. Crystallogr. 32, 91-97.]). For the synthesis of the ligand, see: Szecsenyi et al. (2006[Szecsenyi, K. M., Leovac, V. M. & Evans, I. R. (2006). J. Coord. Chem. 59, 523-530.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C12H10N6S2)Cl2]

  • Mr = 500.36

  • Monoclinic, C 2/c

  • a = 15.825 (3) Å

  • b = 7.6190 (13) Å

  • c = 15.082 (4) Å

  • [beta] = 118.179 (2)°

  • V = 1602.9 (6) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 3.26 mm-1

  • T = 293 K

  • 0.32 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.422, Tmax = 0.474

  • 4270 measured reflections

  • 1561 independent reflections

  • 1445 reflections with I > 2[sigma](I)

  • Rint = 0.018

Refinement
  • R[F2 > 2[sigma](F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.07

  • 1561 reflections

  • 110 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.73 e Å-3

  • [Delta][rho]min = -0.34 e Å-3

Table 1
Selected bond lengths (Å)

Cu1-Cl1 2.2619 (10)
Cu1-S2 2.2295 (9)
Cu1-N1 1.986 (2)
Cu1-N3i 1.961 (3)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N2-H2A...Cl1ii 0.86 2.70 3.507 (2) 156
C2-H2...Cl1iii 0.93 2.77 3.482 (3) 134
C5-H5...S2iv 0.93 2.82 3.425 (3) 124
Symmetry codes: (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2393 ).


Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (No. 20977115).

References

Akinchan, N. T., Drozdzewski, P. M. & Battagli, L. P. (2002). J. Chem. Crystallogr. 32, 91-97.  [ISI] [CSD] [CrossRef] [ChemPort]
Bruker (2003). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Szecsenyi, K. M., Leovac, V. M. & Evans, I. R. (2006). J. Coord. Chem. 59, 523-530.  [ChemPort]
Wang, H. Y., Zhao, P. S., Song, J. & Li, R. Q. (2011). J. Chem. Crystallogr. 41, 379-385.  [ISI] [CSD] [CrossRef] [ChemPort]
West, D. X., Liberta, A. E., Padhye, S. B., Chikate, R. C., Sonawane, P. B., Kumbhar, A. S. & Yerande, R. G. (1993). Coord. Chem. Rev. 123, 49-71.  [CrossRef] [ChemPort] [ISI]
Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o358-o359.  [CSD] [CrossRef] [details]


Acta Cryst (2013). E69, m45  [ doi:10.1107/S1600536812048659 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.