metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Azido-κ2N1:N1-μ-chlorido-bis­­[(2-chloro-3-di­methyl­amino-1-phenyl­prop-1-en-1-yl-κ2C1,N)palladium(II)] chloro­form monosolvate

aInstituto de Fisica de Sao Carlos, Av. do Trabalhador Saocarlense, 400 Sao Carlos, SP, Brazil, and bInstituto de Quimica de Sao Carlos, Av. do Trabalhador Saocarlense, 400 Sao Carlos, SP, Brazil
*Correspondence e-mail: mafud@usp.br

(Received 11 November 2012; accepted 21 November 2012; online 8 December 2012)

In the binuclear title complex, [Pd2(C11H13ClN)2Cl(N3)]·CHCl3, each PdII atom has a slightly distorted square-planar geometry being coordinated by a C and an N atom of the 2-chloro-3-dimethyl­amino-1-phenyl­propyl ligand, a bridging Cl atom and an N atom of a bridging end-on azide group. There is a short intra­molecular C—H⋯Cl contact in the complex mol­ecule. In the crystal, the chloro­form solvent mol­ecule is linked to the complex via a C—H⋯π inter­action.

Related literature

For the crystal structures of similar compounds, see: Moro et al. (2004[Moro, A. C., Mauro, A. E. & Ananias, S. R. (2004). Eclet. Quím. 29, 57-61.]); Caires et al. (2006[Caires, A. C. F., Mauro, A. E., Moro, A. C., de Oliveira Legendre, A. & Ananias, S. R. (2006). Quím. Nova, 29, 750-754.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd2(C11H13ClN)2Cl(N3)]·CHCl3

  • Mr = 799

  • Monoclinic, P 21 /c

  • a = 15.416 (3) Å

  • b = 11.474 (3) Å

  • c = 17.094 (4) Å

  • β = 97.14 (2)°

  • V = 3000.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 293 K

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Enraf–Nonius TurboCAD4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.691, Tmax = 0.832

  • 7536 measured reflections

  • 7278 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.066

  • 3 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.170

  • S = 0.93

  • 7278 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1A–C6A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11A—H11B⋯Cl1 0.96 2.74 3.299 (11) 118
C12—H12⋯Cg1i 0.98 2.77 3.713 (13) 163
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In the title compound, Fig. 1, the palladium atoms have distorted square planar geometry. Each palladium atom is connected to two N atoms. One is an N atom of the end-on bridging azide group [Pd1—N1 2.060 (7) and Pd2—N1 2.054 (8) Å] and the other one is the ligand amine group [Pd1—N4 2.064 (7) and Pd2—N5 2.086 (7) Å]. They are also connected to a C atom [Pd1—C7a 1.979 (9) and Pd2—C7b 1.988 (9) Å] and a bridging Cl atom [Pd1—Cl1 2.454 (3) and Pd2—Cl1 2.457 (3) Å]. These distances and angles are close to those reported for similar compounds (Moro et al., 2004; Caires et al., 2006). There is a short intramolecular C-H···Cl interaction (Table 1) in the complex. In the solid state, the title compound crystallized with one molecule of CHCl3.

In the crystal, the chloroform molecule is linked to the complex via a C-H···π interaction.

Related literature top

For the crystal structures of similar compounds, see: Moro et al. (2004); Caires et al. (2006).

Experimental top

The title compound was synthesized from the interaction between the dimer [Pd(DMBA)(µX)]2 (where X = Cl, N3, NCO) and thiourea, being the product of the cleavage reaction. The reaction was performed by mixing a 1:2 stoichiometric amount of[Pd(DMBA)(µN3)]2 and thiourea in chloroform at room temperature with constant stirring during 1 h. After the reaction mixture was left for the solvent to slowly evaporate at room temperature. Large yellow needle-like crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å, for CH, CH3 and CH2 H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms.

Structure description top

In the title compound, Fig. 1, the palladium atoms have distorted square planar geometry. Each palladium atom is connected to two N atoms. One is an N atom of the end-on bridging azide group [Pd1—N1 2.060 (7) and Pd2—N1 2.054 (8) Å] and the other one is the ligand amine group [Pd1—N4 2.064 (7) and Pd2—N5 2.086 (7) Å]. They are also connected to a C atom [Pd1—C7a 1.979 (9) and Pd2—C7b 1.988 (9) Å] and a bridging Cl atom [Pd1—Cl1 2.454 (3) and Pd2—Cl1 2.457 (3) Å]. These distances and angles are close to those reported for similar compounds (Moro et al., 2004; Caires et al., 2006). There is a short intramolecular C-H···Cl interaction (Table 1) in the complex. In the solid state, the title compound crystallized with one molecule of CHCl3.

In the crystal, the chloroform molecule is linked to the complex via a C-H···π interaction.

For the crystal structures of similar compounds, see: Moro et al. (2004); Caires et al. (2006).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
µ-Azido-κ2N1:N1-µ-chlorido-bis[(2-chloro-3- dimethylamino-1-phenylprop-1-en-1-yl-κ2C1,N)palladium(II)] chloroform monosolvate top
Crystal data top
[Pd2(C11H13ClN)2Cl(N3)]·CHCl3F(000) = 1576
Mr = 799Dx = 1.769 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15 reflections
a = 15.416 (3) Åθ = 3.5–10.8°
b = 11.474 (3) ŵ = 1.76 mm1
c = 17.094 (4) ÅT = 293 K
β = 97.14 (2)°Prism, red
V = 3000.2 (12) Å30.2 × 0.1 × 0.1 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD4
diffractometer
2686 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.066
Graphite monochromatorθmax = 28.1°, θmin = 2.9°
non–profiled ω scansh = 200
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.691, Tmax = 0.832l = 2222
7536 measured reflections3 standard reflections every 120 min
7278 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0614P)2]
where P = (Fo2 + 2Fc2)/3
7278 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Pd2(C11H13ClN)2Cl(N3)]·CHCl3V = 3000.2 (12) Å3
Mr = 799Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.416 (3) ŵ = 1.76 mm1
b = 11.474 (3) ÅT = 293 K
c = 17.094 (4) Å0.2 × 0.1 × 0.1 mm
β = 97.14 (2)°
Data collection top
Enraf–Nonius TurboCAD4
diffractometer
2686 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.066
Tmin = 0.691, Tmax = 0.8323 standard reflections every 120 min
7536 measured reflections intensity decay: 1%
7278 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 0.93Δρmax = 0.75 e Å3
7278 reflectionsΔρmin = 0.60 e Å3
329 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.74282 (5)0.05511 (7)0.64046 (4)0.0494 (3)
Pd20.61088 (5)0.04133 (7)0.75721 (4)0.0477 (3)
Cl10.58807 (19)0.0000 (3)0.61517 (15)0.0748 (11)
Cl21.00891 (19)0.1565 (3)0.58511 (18)0.0912 (14)
Cl30.5788 (2)0.2278 (3)0.98230 (18)0.0847 (11)
N10.7132 (5)0.0720 (8)0.7541 (5)0.060 (3)
N20.7335 (7)0.1516 (10)0.7953 (6)0.072 (4)
N30.7551 (7)0.2286 (10)0.8356 (7)0.097 (5)
N40.7701 (6)0.0231 (7)0.5275 (4)0.056 (3)
N50.5100 (6)0.1623 (7)0.7548 (5)0.056 (3)
C1A0.9152 (6)0.1204 (9)0.7375 (6)0.052 (4)
C1B0.6717 (7)0.0011 (8)0.9329 (5)0.049 (3)
C2A0.9345 (6)0.0278 (10)0.7880 (6)0.067 (4)
C2B0.6278 (8)0.0717 (10)0.9781 (6)0.073 (5)
C3A0.9793 (8)0.0472 (15)0.8636 (7)0.098 (6)
C3B0.6714 (13)0.1406 (12)1.0365 (7)0.107 (7)
C4A1.0045 (9)0.1571 (17)0.8864 (7)0.100 (7)
C4B0.7603 (14)0.1320 (14)1.0537 (8)0.112 (8)
C5A0.9832 (8)0.2477 (13)0.8361 (9)0.089 (6)
C5B0.8043 (9)0.0626 (14)1.0078 (9)0.100 (6)
C6A0.9400 (8)0.2308 (11)0.7619 (7)0.077 (5)
C6B0.7623 (8)0.0030 (11)0.9476 (7)0.082 (5)
C7A0.8672 (6)0.1010 (8)0.6573 (5)0.050 (3)
C7B0.6233 (6)0.0737 (8)0.8724 (5)0.047 (3)
C8A0.9010 (7)0.1115 (9)0.5911 (6)0.058 (4)
C8B0.5814 (7)0.1672 (10)0.8879 (6)0.061 (4)
C9A0.8470 (7)0.0941 (10)0.5124 (5)0.066 (4)
C9B0.5306 (7)0.2395 (10)0.8233 (6)0.076 (5)
C10A0.7924 (8)0.1028 (10)0.5224 (7)0.082 (5)
C10B0.4982 (8)0.2349 (10)0.6818 (6)0.086 (5)
C11A0.6979 (7)0.0499 (11)0.4648 (6)0.080 (5)
C11B0.4299 (7)0.0972 (10)0.7599 (7)0.081 (5)
Cl40.8090 (3)0.0041 (3)0.2711 (2)0.1048 (16)
Cl50.7771 (3)0.2344 (3)0.3010 (3)0.131 (2)
Cl60.7452 (3)0.1444 (4)0.1462 (2)0.147 (2)
C120.8118 (8)0.1356 (10)0.2348 (7)0.082 (5)
H9A10.880700.053800.476500.0800*
H9A20.828200.168600.489400.0800*
H2A0.917900.047300.772100.0800*
H2B0.567000.074600.969300.0880*
H9B10.477300.269100.840800.0910*
H3A0.991700.015000.898100.1180*
H3B0.640500.192801.064100.1290*
H9B20.565500.305100.809700.0910*
H4A1.036000.170200.935600.1200*
H4B0.789800.172901.095800.1340*
H5A0.998300.323000.852600.1070*
H5B0.865000.059301.017600.1200*
H6A0.927600.293900.728200.0920*
H6B0.794400.048700.916600.0980*
H10A0.801100.121500.469200.1220*
H10B0.844900.118900.557000.1220*
H10C0.745400.149000.537700.1220*
H10D0.474400.187700.637900.1290*
H10E0.553700.265800.672000.1290*
H10F0.458800.297900.688600.1290*
H11A0.716700.035600.414200.1210*
H11B0.648600.001200.471100.1210*
H11C0.681500.130300.468500.1210*
H11D0.381300.150100.755900.1220*
H11E0.434200.057000.809400.1220*
H11F0.421300.041800.717600.1220*
H120.871900.154500.226200.0990*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0517 (5)0.0582 (5)0.0388 (4)0.0015 (5)0.0081 (3)0.0009 (4)
Pd20.0481 (5)0.0501 (5)0.0452 (4)0.0042 (4)0.0068 (3)0.0059 (4)
Cl10.0710 (19)0.097 (2)0.0568 (16)0.0006 (17)0.0095 (14)0.0031 (15)
Cl20.0608 (19)0.135 (3)0.082 (2)0.008 (2)0.0257 (16)0.008 (2)
Cl30.096 (2)0.083 (2)0.0741 (19)0.0033 (19)0.0066 (17)0.0234 (18)
N10.063 (6)0.061 (7)0.055 (5)0.017 (5)0.009 (4)0.008 (5)
N20.078 (7)0.062 (7)0.078 (8)0.001 (6)0.015 (6)0.006 (6)
N30.099 (9)0.082 (9)0.113 (9)0.000 (7)0.021 (7)0.025 (7)
N40.072 (6)0.057 (6)0.040 (4)0.001 (5)0.011 (4)0.001 (4)
N50.063 (6)0.052 (6)0.049 (5)0.008 (5)0.005 (4)0.011 (4)
C1A0.054 (6)0.050 (7)0.054 (6)0.005 (5)0.012 (5)0.008 (5)
C1B0.065 (7)0.045 (6)0.038 (5)0.004 (5)0.010 (5)0.004 (4)
C2A0.058 (7)0.078 (9)0.060 (7)0.000 (6)0.010 (5)0.011 (6)
C2B0.097 (9)0.074 (9)0.049 (6)0.004 (7)0.013 (6)0.012 (6)
C3A0.079 (9)0.139 (13)0.070 (8)0.015 (10)0.017 (7)0.027 (10)
C3B0.185 (17)0.083 (10)0.055 (8)0.015 (12)0.024 (10)0.025 (7)
C4A0.087 (10)0.157 (16)0.053 (8)0.023 (11)0.003 (7)0.016 (10)
C4B0.171 (18)0.097 (12)0.056 (9)0.053 (13)0.030 (11)0.006 (8)
C5A0.078 (9)0.094 (11)0.095 (10)0.001 (8)0.009 (8)0.031 (9)
C5B0.076 (9)0.128 (13)0.091 (10)0.013 (10)0.011 (8)0.013 (10)
C6A0.072 (8)0.075 (9)0.080 (9)0.015 (7)0.005 (7)0.014 (7)
C6B0.077 (9)0.092 (10)0.071 (8)0.000 (7)0.014 (7)0.006 (7)
C7A0.054 (6)0.053 (6)0.044 (5)0.002 (5)0.010 (5)0.001 (5)
C7B0.037 (5)0.049 (7)0.054 (6)0.003 (5)0.003 (4)0.009 (5)
C8A0.060 (7)0.053 (7)0.065 (7)0.008 (6)0.020 (6)0.004 (6)
C8B0.065 (7)0.061 (8)0.055 (6)0.008 (6)0.002 (6)0.002 (6)
C9A0.065 (7)0.089 (9)0.048 (6)0.002 (6)0.018 (6)0.010 (6)
C9B0.072 (8)0.081 (9)0.074 (8)0.010 (7)0.003 (6)0.004 (7)
C10A0.105 (10)0.074 (9)0.068 (8)0.014 (8)0.020 (7)0.011 (7)
C10B0.109 (10)0.078 (9)0.073 (8)0.044 (8)0.020 (7)0.021 (7)
C11A0.080 (8)0.108 (10)0.050 (6)0.008 (8)0.005 (6)0.004 (7)
C11B0.049 (7)0.101 (10)0.091 (9)0.011 (7)0.002 (6)0.003 (8)
Cl40.135 (3)0.073 (2)0.108 (3)0.008 (2)0.022 (2)0.015 (2)
Cl50.145 (4)0.102 (3)0.144 (4)0.046 (3)0.007 (3)0.038 (3)
Cl60.206 (5)0.143 (4)0.087 (3)0.024 (4)0.004 (3)0.021 (3)
C120.087 (9)0.066 (8)0.097 (9)0.007 (7)0.022 (7)0.011 (7)
Geometric parameters (Å, º) top
Pd1—Cl12.454 (3)C5A—C6A1.371 (19)
Pd1—N12.059 (8)C5B—C6B1.37 (2)
Pd1—N42.060 (7)C7A—C8A1.309 (14)
Pd1—C7A1.975 (9)C7B—C8B1.297 (15)
Pd2—Cl12.456 (3)C8A—C9A1.505 (14)
Pd2—N12.050 (8)C8B—C9B1.519 (15)
Pd2—N52.081 (9)C2A—H2A0.9300
Pd2—C7B1.990 (9)C2B—H2B0.9300
Cl2—C8A1.757 (11)C3A—H3A0.9300
Cl3—C8B1.762 (11)C3B—H3B0.9300
Cl4—C121.721 (12)C4A—H4A0.9300
Cl5—C121.733 (13)C4B—H4B0.9300
Cl6—C121.724 (13)C5A—H5A0.9300
N1—N21.172 (14)C5B—H5B0.9300
N2—N31.144 (16)C6A—H6A0.9300
N4—C9A1.487 (14)C6B—H6B0.9300
N4—C10A1.490 (14)C9A—H9A10.9700
N4—C11A1.478 (13)C9A—H9A20.9700
N5—C9B1.471 (14)C9B—H9B20.9700
N5—C11B1.455 (14)C9B—H9B10.9700
N5—C10B1.493 (14)C10A—H10B0.9600
C1A—C7A1.491 (13)C10A—H10A0.9600
C1A—C6A1.373 (16)C10A—H10C0.9600
C1A—C2A1.378 (15)C10B—H10D0.9600
C1B—C2B1.372 (15)C10B—H10E0.9600
C1B—C6B1.388 (16)C10B—H10F0.9600
C1B—C7B1.459 (13)C11A—H11C0.9600
C2A—C3A1.405 (16)C11A—H11A0.9600
C2B—C3B1.381 (18)C11A—H11B0.9600
C3A—C4A1.36 (2)C11B—H11D0.9600
C3B—C4B1.37 (3)C11B—H11E0.9600
C4A—C5A1.36 (2)C11B—H11F0.9600
C4B—C5B1.36 (2)C12—H120.9800
Cl1—Pd1—N182.3 (2)C3A—C2A—H2A120.00
Cl1—Pd1—N495.5 (3)C1B—C2B—H2B119.00
Cl1—Pd1—C7A178.2 (3)C3B—C2B—H2B119.00
N1—Pd1—N4175.1 (3)C2A—C3A—H3A120.00
N1—Pd1—C7A99.4 (3)C4A—C3A—H3A120.00
N4—Pd1—C7A82.9 (4)C2B—C3B—H3B120.00
Cl1—Pd2—N182.4 (3)C4B—C3B—H3B120.00
Cl1—Pd2—N595.4 (2)C3A—C4A—H4A120.00
Cl1—Pd2—C7B177.3 (3)C5A—C4A—H4A120.00
N1—Pd2—N5176.4 (3)C3B—C4B—H4B121.00
N1—Pd2—C7B99.5 (4)C5B—C4B—H4B121.00
N5—Pd2—C7B82.8 (4)C4A—C5A—H5A119.00
Pd1—Cl1—Pd281.89 (9)C6A—C5A—H5A119.00
Pd1—N1—Pd2103.1 (4)C4B—C5B—H5B119.00
Pd1—N1—N2124.5 (8)C6B—C5B—H5B119.00
Pd2—N1—N2128.9 (8)C1A—C6A—H6A120.00
N1—N2—N3178.6 (12)C5A—C6A—H6A120.00
Pd1—N4—C9A109.0 (5)C1B—C6B—H6B120.00
Pd1—N4—C10A107.7 (6)C5B—C6B—H6B120.00
Pd1—N4—C11A114.8 (7)N4—C9A—H9A1110.00
C9A—N4—C10A109.0 (9)N4—C9A—H9A2110.00
C9A—N4—C11A107.8 (7)C8A—C9A—H9A1110.00
C10A—N4—C11A108.5 (8)C8A—C9A—H9A2110.00
Pd2—N5—C9B107.4 (6)H9A1—C9A—H9A2109.00
Pd2—N5—C10B113.7 (7)N5—C9B—H9B1110.00
Pd2—N5—C11B107.1 (6)N5—C9B—H9B2110.00
C9B—N5—C10B108.7 (8)C8B—C9B—H9B1110.00
C9B—N5—C11B111.2 (8)C8B—C9B—H9B2110.00
C10B—N5—C11B108.7 (9)H9B1—C9B—H9B2109.00
C2A—C1A—C6A119.4 (10)N4—C10A—H10A109.00
C2A—C1A—C7A120.3 (9)N4—C10A—H10B109.00
C6A—C1A—C7A120.3 (9)N4—C10A—H10C109.00
C2B—C1B—C6B117.6 (10)H10A—C10A—H10B110.00
C2B—C1B—C7B120.2 (10)H10A—C10A—H10C109.00
C6B—C1B—C7B122.3 (9)H10B—C10A—H10C109.00
C1A—C2A—C3A119.8 (11)N5—C10B—H10D109.00
C1B—C2B—C3B121.7 (13)N5—C10B—H10E109.00
C2A—C3A—C4A120.0 (13)N5—C10B—H10F109.00
C2B—C3B—C4B119.9 (14)H10D—C10B—H10E110.00
C3A—C4A—C5A119.2 (12)H10D—C10B—H10F109.00
C3B—C4B—C5B118.5 (14)H10E—C10B—H10F110.00
C4A—C5A—C6A121.8 (14)N4—C11A—H11A109.00
C4B—C5B—C6B122.2 (14)N4—C11A—H11B109.00
C1A—C6A—C5A119.8 (12)N4—C11A—H11C109.00
C1B—C6B—C5B119.9 (11)H11A—C11A—H11B109.00
Pd1—C7A—C1A122.4 (6)H11A—C11A—H11C110.00
Pd1—C7A—C8A112.5 (7)H11B—C11A—H11C109.00
C1A—C7A—C8A125.1 (9)N5—C11B—H11D109.00
Pd2—C7B—C1B125.0 (7)N5—C11B—H11E109.00
Pd2—C7B—C8B111.6 (7)N5—C11B—H11F109.00
C1B—C7B—C8B123.5 (9)H11D—C11B—H11E110.00
Cl2—C8A—C7A124.0 (8)H11D—C11B—H11F109.00
Cl2—C8A—C9A114.2 (7)H11E—C11B—H11F110.00
C7A—C8A—C9A121.7 (10)Cl4—C12—Cl5110.5 (7)
Cl3—C8B—C7B125.6 (8)Cl4—C12—Cl6109.4 (7)
Cl3—C8B—C9B112.5 (8)Cl5—C12—Cl6109.7 (7)
C7B—C8B—C9B121.9 (9)Cl4—C12—H12109.00
N4—C9A—C8A106.4 (7)Cl5—C12—H12109.00
N5—C9B—C8B106.9 (9)Cl6—C12—H12109.00
C1A—C2A—H2A120.00
N1—Pd1—Cl1—Pd221.6 (3)C11B—N5—C9B—C8B85.9 (10)
N4—Pd1—Cl1—Pd2153.9 (2)C6A—C1A—C2A—C3A0.1 (15)
Cl1—Pd1—N1—Pd226.6 (3)C7A—C1A—C2A—C3A179.6 (9)
Cl1—Pd1—N1—N2133.7 (9)C2A—C1A—C6A—C5A0.3 (17)
C7A—Pd1—N1—Pd2154.1 (4)C7A—C1A—C6A—C5A179.2 (10)
C7A—Pd1—N1—N245.6 (10)C2A—C1A—C7A—Pd169.6 (11)
Cl1—Pd1—N4—C9A155.7 (6)C2A—C1A—C7A—C8A110.2 (12)
Cl1—Pd1—N4—C10A86.2 (7)C6A—C1A—C7A—Pd1110.0 (10)
Cl1—Pd1—N4—C11A34.8 (7)C6A—C1A—C7A—C8A70.3 (14)
C7A—Pd1—N4—C9A23.4 (7)C6B—C1B—C2B—C3B0.3 (16)
C7A—Pd1—N4—C10A94.7 (7)C7B—C1B—C2B—C3B179.2 (10)
C7A—Pd1—N4—C11A144.4 (8)C2B—C1B—C6B—C5B2.8 (17)
N1—Pd1—C7A—C1A7.9 (8)C7B—C1B—C6B—C5B176.7 (11)
N1—Pd1—C7A—C8A172.3 (7)C2B—C1B—C7B—Pd2103.3 (10)
N4—Pd1—C7A—C1A167.7 (8)C2B—C1B—C7B—C8B75.4 (13)
N4—Pd1—C7A—C8A12.1 (7)C6B—C1B—C7B—Pd277.3 (12)
N1—Pd2—Cl1—Pd121.7 (3)C6B—C1B—C7B—C8B104.1 (13)
N5—Pd2—Cl1—Pd1155.4 (2)C1A—C2A—C3A—C4A0.8 (17)
Cl1—Pd2—N1—Pd126.6 (3)C1B—C2B—C3B—C4B4.0 (19)
Cl1—Pd2—N1—N2132.5 (10)C2A—C3A—C4A—C5A2.1 (19)
C7B—Pd2—N1—Pd1155.4 (4)C2B—C3B—C4B—C5B6 (2)
C7B—Pd2—N1—N245.5 (11)C3A—C4A—C5A—C6A3 (2)
Cl1—Pd2—N5—C9B155.6 (6)C3B—C4B—C5B—C6B3 (2)
Cl1—Pd2—N5—C10B35.3 (7)C4A—C5A—C6A—C1A1.6 (19)
Cl1—Pd2—N5—C11B84.8 (7)C4B—C5B—C6B—C1B1 (2)
C7B—Pd2—N5—C9B26.5 (7)Pd1—C7A—C8A—Cl2177.5 (6)
C7B—Pd2—N5—C10B146.8 (7)Pd1—C7A—C8A—C9A2.2 (13)
C7B—Pd2—N5—C11B93.1 (7)C1A—C7A—C8A—Cl22.7 (15)
N1—Pd2—C7B—C1B18.8 (9)C1A—C7A—C8A—C9A178.0 (9)
N1—Pd2—C7B—C8B162.4 (8)Pd2—C7B—C8B—Cl3178.0 (6)
N5—Pd2—C7B—C1B164.0 (9)Pd2—C7B—C8B—C9B0.2 (13)
N5—Pd2—C7B—C8B14.8 (8)C1B—C7B—C8B—Cl33.2 (16)
Pd1—N4—C9A—C8A28.3 (9)C1B—C7B—C8B—C9B179.1 (10)
C10A—N4—C9A—C8A88.9 (9)Cl2—C8A—C9A—N4162.9 (7)
C11A—N4—C9A—C8A153.5 (8)C7A—C8A—C9A—N421.4 (14)
Pd2—N5—C9B—C8B31.1 (9)Cl3—C8B—C9B—N5159.5 (7)
C10B—N5—C9B—C8B154.5 (9)C7B—C8B—C9B—N522.5 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1A–C6A ring.
D—H···AD—HH···AD···AD—H···A
C11A—H11B···Cl10.962.743.299 (11)118
C12—H12···Cg1i0.982.773.713 (13)163
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Pd2(C11H13ClN)2Cl(N3)]·CHCl3
Mr799
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.416 (3), 11.474 (3), 17.094 (4)
β (°) 97.14 (2)
V3)3000.2 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerEnraf–Nonius TurboCAD4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.691, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
7536, 7278, 2686
Rint0.066
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.170, 0.93
No. of reflections7278
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.60

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1A–C6A ring.
D—H···AD—HH···AD···AD—H···A
C11A—H11B···Cl10.962.743.299 (11)118
C12—H12···Cg1i0.982.773.713 (13)163
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

We are extremely grateful to the late Professor Antonio Carlos Favero Caires for suppling us with the sample used, and to the CNPq National Council for Technological and Scientific Development for supporting this study.

References

First citationCaires, A. C. F., Mauro, A. E., Moro, A. C., de Oliveira Legendre, A. & Ananias, S. R. (2006). Quím. Nova, 29, 750–754.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMoro, A. C., Mauro, A. E. & Ananias, S. R. (2004). Eclet. Quím. 29, 57–61.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds