organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(Z)-[3-(1-Hy­dr­oxy­eth­yl)anilino]methyl­­idene}naphthalen-2(1H)-one

aSchool of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ England, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, and ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 12 December 2012; accepted 12 December 2012; online 19 December 2012)

In the title compound, C19H17NO2, the dihedral angle between the benzene ring and the naphthalene ring system is 9.72 (5)°, while the torsion angle of the C—N—C—C bridging group is 179.24 (17)°. The methyl group of the 1-phenyl­ethanol moiety is disordered over two positions with a refined occupancy ratio of 0.775 (5):0.225 (5). The mol­ecular conformation is stabil­ized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming zigzag chains propagating along the c-axis direction. Neighbouring chains are linked via C—H⋯O inter­actions, forming a two-dimensional slab-like network parallel to the bc plane.

Related literature

For the biological and industrial properties of Schiff bases, see: Keypour et al. (2009[Keypour, H., Rezaeivala, M., Valencia, L., Perez-Lourido, P. & Khavasi, H. R. (2009). Polyhedron, 28, 3755-3758.]); Suslick & Reinert (1988[Suslick, K. S. & Reinert, T. J. (1988). J. Chem. Educ. 62, 974-983.]); Tisato et al. (1994[Tisato, F., Refosco, F. & Bandoli, G. (1994). Coord. Chem. Rev. 135, 325-397.]). For the synthesis and coordination chemistry of azomethines, see, for example: Singh & Adhikari (2012[Singh, K. B. & Adhikari, D. (2012). Int. J. Basic Appl. Chem. Sci. 2, 84-107.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO2

  • Mr = 291.34

  • Monoclinic, P 21 /c

  • a = 18.9837 (10) Å

  • b = 4.740 (2) Å

  • c = 16.105 (8) Å

  • β = 92.927 (9)°

  • V = 1447.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.21 × 0.10 × 0.03 mm

Data collection
  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.997

  • 7947 measured reflections

  • 3169 independent reflections

  • 2836 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.175

  • S = 1.06

  • 3169 reflections

  • 200 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.86 2.567 (2) 136
O2—H2⋯O1i 0.84 2.08 2.710 (2) 132
C11—H11⋯O2ii 0.95 2.55 3.327 (3) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff-base complexes are considered to be among the most important stereochemical models in main group and transition metal coordination chemistry due to their preparative accessibility and structural variety (Keypour et al., 2009). With the increasing incidence of deep mycosis, there has been intense emphasis on the screening of new and more effective antimicrobial drugs with low toxicity. A considerable number of Schiff-base complexes have potential biological interest, being used as more or less successful models of biological compounds (Suslick & Reinert, 1988). Not only have they played a seminal role in the development of modern coordination chemistry (Singh & Adhikari, 2012), but they can also be found at key points in the development of inorganic biochemistry, catalysis and optical materials (Tisato et al., 1994). Further to our on going study on synthesis of versatile bioactive molecules we herein report the synthesis and crystal structure of the title compound.

In the title molecule, Fig.1, the C12–C17 benzene ring and the C1–C10 naphthalene ring system make a dihedral angle of 9.72 (5) °. The torsion angle of the C12—N1—C11—C1 bridging group between these rings is 179.24 (17)°. The bond lengths and angles are within the normal range (Allen et al., 1987). The molecular conformation of is stabilized by an intramolecular N—H···O hydrogen bond generating an S(6) ring motif (Table 1; Bernstein et al., 1995).

In the crystal, molecules are linked by C—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2), forming zigzag chains running parallel to the ac plane along the c axis direction. These chains are linked via C-H···O interactions forming a two-dimensional slab-like network lying parallel to the bc plane.

Related literature top

For the biological and industrial properties of Schiff bases, see: Keypour et al. (2009); Suslick & Reinert (1988); Tisato et al. (1994). For the synthesis and coordination chemistry of azomethines, see, for example: Singh & Adhikari (2012). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 1 mmol (172 mg) 2-hydroxynaphthalene-1-carbaldehyde and 1 mmol (122 mg) 1-phenylethanol in 50 ml ethanol was refluxed for 5 h at 350 K. The reaction mixture was left to cool down at ambient temperature for 24 h when a solid precipitate was deposited. The reddish crude product was crystallized from ethanol to afford a good yield (195 mg; 67%) of high quality orange plate-like crystals suitable for X-ray diffraction analysis.

Refinement top

All the H-atoms were placed in calculated positions and treated as riding atoms: O—H = 0.84 Å, N—H = 0.88 Å, C—H = 0.95(aromatic), 0.98(methyl) and 1.00(methine) Å, with Uiso(H) = k × Ueq(C,N,O), where k = 1.5 for OH and methyl H atoms, and = 1.2 for other H atoms. The methyl group of the 1-phenylethanol moiety, C19, is disordered over two positions with a refined occupancy ratio of 0.775 (5):0.225 (5).

Structure description top

Schiff-base complexes are considered to be among the most important stereochemical models in main group and transition metal coordination chemistry due to their preparative accessibility and structural variety (Keypour et al., 2009). With the increasing incidence of deep mycosis, there has been intense emphasis on the screening of new and more effective antimicrobial drugs with low toxicity. A considerable number of Schiff-base complexes have potential biological interest, being used as more or less successful models of biological compounds (Suslick & Reinert, 1988). Not only have they played a seminal role in the development of modern coordination chemistry (Singh & Adhikari, 2012), but they can also be found at key points in the development of inorganic biochemistry, catalysis and optical materials (Tisato et al., 1994). Further to our on going study on synthesis of versatile bioactive molecules we herein report the synthesis and crystal structure of the title compound.

In the title molecule, Fig.1, the C12–C17 benzene ring and the C1–C10 naphthalene ring system make a dihedral angle of 9.72 (5) °. The torsion angle of the C12—N1—C11—C1 bridging group between these rings is 179.24 (17)°. The bond lengths and angles are within the normal range (Allen et al., 1987). The molecular conformation of is stabilized by an intramolecular N—H···O hydrogen bond generating an S(6) ring motif (Table 1; Bernstein et al., 1995).

In the crystal, molecules are linked by C—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2), forming zigzag chains running parallel to the ac plane along the c axis direction. These chains are linked via C-H···O interactions forming a two-dimensional slab-like network lying parallel to the bc plane.

For the biological and industrial properties of Schiff bases, see: Keypour et al. (2009); Suslick & Reinert (1988); Tisato et al. (1994). For the synthesis and coordination chemistry of azomethines, see, for example: Singh & Adhikari (2012). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom numbering. The displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered methyl group, C19, is shown.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines [H atoms not involved in the hydrogen bonding have been omitted for clarity; only the major component of the disordered methyl group, C19, is shown].
1-{(Z)-[3-(1-Hydroxyethyl)anilino]methylidene}naphthalen- 2(1H)-one top
Crystal data top
C19H17NO2F(000) = 616
Mr = 291.34Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 3255 reflections
a = 18.9837 (10) Åθ = 2.5–27.5°
b = 4.740 (2) ŵ = 0.09 mm1
c = 16.105 (8) ÅT = 100 K
β = 92.927 (9)°Plate, orange
V = 1447.3 (9) Å30.21 × 0.10 × 0.03 mm
Z = 4
Data collection top
Rigaku AFC12 (Right)
diffractometer
3169 independent reflections
Radiation source: Rotating Anode2836 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.021
profile data from ω–scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 2224
Tmin = 0.982, Tmax = 0.997k = 56
7947 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.8621P]
where P = (Fo2 + 2Fc2)/3
3169 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.42 e Å3
6 restraintsΔρmin = 0.40 e Å3
Crystal data top
C19H17NO2V = 1447.3 (9) Å3
Mr = 291.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.9837 (10) ŵ = 0.09 mm1
b = 4.740 (2) ÅT = 100 K
c = 16.105 (8) Å0.21 × 0.10 × 0.03 mm
β = 92.927 (9)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
3169 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
2836 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.997Rint = 0.021
7947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0656 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
3169 reflectionsΔρmin = 0.40 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.24195 (7)0.6722 (3)0.13570 (9)0.0357 (4)
O20.30336 (7)0.3769 (3)0.49991 (9)0.0353 (4)
N10.28516 (8)0.3859 (3)0.26369 (10)0.0273 (4)
C10.19536 (9)0.7409 (4)0.26860 (11)0.0274 (5)
C20.19913 (9)0.8010 (4)0.18140 (12)0.0300 (6)
C30.15259 (10)1.0149 (5)0.14572 (13)0.0334 (6)
C40.10697 (10)1.1537 (5)0.19253 (13)0.0349 (6)
C50.10260 (9)1.1025 (4)0.28010 (13)0.0319 (6)
C60.05493 (10)1.2531 (5)0.32734 (15)0.0384 (7)
C70.05156 (11)1.2097 (5)0.41139 (15)0.0409 (7)
C80.09706 (11)1.0136 (5)0.45051 (14)0.0382 (6)
C90.14383 (10)0.8623 (4)0.40615 (13)0.0337 (6)
C100.14765 (9)0.8979 (4)0.31905 (12)0.0286 (5)
C110.23989 (9)0.5345 (4)0.30527 (11)0.0272 (5)
C120.33197 (9)0.1781 (4)0.29629 (11)0.0259 (5)
C130.32893 (10)0.0716 (4)0.37676 (11)0.0301 (6)
C140.37591 (10)0.1355 (5)0.40543 (12)0.0318 (6)
C150.42692 (10)0.2333 (4)0.35367 (12)0.0316 (6)
C160.42992 (10)0.1285 (4)0.27363 (12)0.0306 (6)
C170.38249 (10)0.0757 (4)0.24463 (12)0.0288 (5)
C180.37040 (11)0.2558 (6)0.49218 (13)0.0427 (6)
C19A0.39187 (15)0.0604 (7)0.55719 (17)0.0427 (6)0.775 (5)
C19B0.4279 (3)0.288 (2)0.5443 (5)0.049 (3)*0.225 (5)
H10.286200.420200.210100.0330*
H20.296500.404300.550400.0530*
H40.076601.290400.166700.0420*
H60.024401.387700.300600.0460*
H70.018801.311500.442500.0490*
H80.095600.984700.508800.0460*
H90.174300.730900.434300.0400*
H110.237300.499800.363100.0330*
H130.294400.141200.412300.0360*
H150.459800.372300.373200.0380*
H160.464700.197000.238400.0370*
H170.384600.145500.189500.0350*
H18A0.404800.415500.496600.0510*0.775 (5)
H19A0.385300.147500.611500.0640*0.775 (5)
H19B0.363200.111100.551800.0640*0.775 (5)
H19C0.441700.012200.552600.0640*0.775 (5)
H30.154201.058600.088300.0400*
H18B0.355800.071100.515900.0510*0.225 (5)
H19D0.458500.122500.540600.0730*0.225 (5)
H19E0.453800.457200.528600.0730*0.225 (5)
H19F0.413200.308400.601400.0730*0.225 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0371 (7)0.0427 (8)0.0281 (7)0.0014 (6)0.0089 (6)0.0039 (7)
O20.0445 (8)0.0360 (8)0.0263 (7)0.0094 (6)0.0095 (6)0.0020 (6)
N10.0282 (7)0.0306 (8)0.0233 (8)0.0037 (6)0.0043 (6)0.0008 (7)
C10.0262 (8)0.0290 (9)0.0272 (9)0.0057 (7)0.0032 (7)0.0007 (8)
C20.0271 (9)0.0324 (10)0.0307 (10)0.0053 (7)0.0026 (7)0.0008 (8)
C30.0320 (9)0.0375 (11)0.0306 (10)0.0048 (8)0.0005 (7)0.0053 (9)
C40.0283 (9)0.0351 (11)0.0409 (12)0.0024 (8)0.0023 (8)0.0042 (9)
C50.0257 (9)0.0322 (10)0.0380 (11)0.0052 (7)0.0025 (7)0.0023 (9)
C60.0299 (10)0.0368 (11)0.0485 (13)0.0009 (8)0.0029 (8)0.0019 (10)
C70.0361 (11)0.0398 (12)0.0476 (13)0.0011 (9)0.0112 (9)0.0113 (11)
C80.0397 (11)0.0393 (11)0.0364 (11)0.0050 (9)0.0096 (8)0.0065 (10)
C90.0342 (10)0.0349 (11)0.0325 (10)0.0017 (8)0.0053 (8)0.0030 (9)
C100.0244 (8)0.0293 (9)0.0324 (10)0.0066 (7)0.0033 (7)0.0019 (8)
C110.0278 (9)0.0290 (9)0.0251 (9)0.0065 (7)0.0039 (7)0.0031 (8)
C120.0269 (8)0.0263 (9)0.0245 (9)0.0057 (7)0.0013 (6)0.0001 (8)
C130.0283 (9)0.0393 (11)0.0229 (9)0.0063 (7)0.0039 (7)0.0023 (8)
C140.0292 (9)0.0411 (11)0.0248 (9)0.0091 (8)0.0017 (7)0.0050 (9)
C150.0315 (9)0.0310 (10)0.0316 (10)0.0045 (7)0.0037 (7)0.0035 (9)
C160.0348 (10)0.0297 (10)0.0275 (10)0.0001 (7)0.0035 (7)0.0030 (8)
C170.0354 (9)0.0295 (10)0.0219 (9)0.0020 (7)0.0047 (7)0.0018 (8)
C180.0393 (9)0.0592 (12)0.0294 (8)0.0086 (8)0.0012 (6)0.0102 (8)
C19A0.0393 (9)0.0592 (12)0.0294 (8)0.0086 (8)0.0012 (6)0.0102 (8)
Geometric parameters (Å, º) top
O1—C21.279 (2)C15—C161.385 (3)
O2—C181.407 (3)C16—C171.387 (3)
O2—H20.8400C18—C19B1.351 (7)
N1—C111.320 (2)C18—C19A1.441 (4)
N1—C121.410 (2)C3—H30.9500
N1—H10.8800C4—H40.9500
C1—C101.452 (3)C6—H60.9500
C1—C111.403 (3)C7—H70.9500
C1—C21.438 (3)C8—H80.9500
C2—C31.445 (3)C9—H90.9500
C3—C41.348 (3)C11—H110.9500
C4—C51.438 (3)C13—H130.9500
C5—C101.418 (3)C15—H150.9500
C5—C61.406 (3)C16—H160.9500
C6—C71.374 (3)C17—H170.9500
C7—C81.397 (3)C18—H18A1.0000
C8—C91.370 (3)C18—H18B1.0000
C9—C101.418 (3)C19A—H19A0.9800
C12—C171.389 (3)C19A—H19B0.9800
C12—C131.395 (3)C19A—H19C0.9800
C13—C141.389 (3)C19B—H19D0.9800
C14—C181.518 (3)C19B—H19E0.9800
C14—C151.389 (3)C19B—H19F0.9800
C18—O2—H2110.00C4—C3—H3119.00
C11—N1—C12126.75 (16)C3—C4—H4119.00
C11—N1—H1117.00C5—C4—H4119.00
C12—N1—H1117.00C5—C6—H6119.00
C2—C1—C10120.55 (16)C7—C6—H6119.00
C2—C1—C11119.34 (16)C6—C7—H7121.00
C10—C1—C11120.08 (16)C8—C7—H7120.00
C1—C2—C3117.87 (17)C7—C8—H8120.00
O1—C2—C3119.99 (18)C9—C8—H8119.00
O1—C2—C1122.14 (17)C8—C9—H9119.00
C2—C3—C4121.15 (19)C10—C9—H9119.00
C3—C4—C5122.5 (2)N1—C11—H11118.00
C4—C5—C6121.06 (18)C1—C11—H11118.00
C4—C5—C10119.06 (17)C12—C13—H13120.00
C6—C5—C10119.87 (19)C14—C13—H13120.00
C5—C6—C7121.4 (2)C14—C15—H15120.00
C6—C7—C8119.0 (2)C16—C15—H15120.00
C7—C8—C9121.0 (2)C15—C16—H16120.00
C8—C9—C10121.37 (18)C17—C16—H16120.00
C1—C10—C5118.83 (17)C12—C17—H17120.00
C1—C10—C9123.86 (17)C16—C17—H17120.00
C5—C10—C9117.31 (17)O2—C18—H18A106.00
N1—C11—C1123.53 (16)O2—C18—H18B93.00
C13—C12—C17119.52 (17)C14—C18—H18A106.00
N1—C12—C13122.93 (16)C14—C18—H18B93.00
N1—C12—C17117.54 (16)C19A—C18—H18A106.00
C12—C13—C14120.55 (17)C19B—C18—H18B95.00
C13—C14—C15119.45 (18)C18—C19A—H19A109.00
C13—C14—C18119.88 (18)C18—C19A—H19B109.00
C15—C14—C18120.66 (19)C18—C19A—H19C109.00
C14—C15—C16120.11 (18)H19A—C19A—H19B109.00
C15—C16—C17120.46 (18)H19A—C19A—H19C109.00
C12—C17—C16119.90 (18)H19B—C19A—H19C110.00
O2—C18—C19A114.92 (19)C18—C19B—H19D110.00
C14—C18—C19B121.5 (4)C18—C19B—H19E109.00
O2—C18—C19B127.2 (4)C18—C19B—H19F110.00
C14—C18—C19A113.4 (2)H19D—C19B—H19E109.00
O2—C18—C14109.87 (16)H19D—C19B—H19F110.00
C2—C3—H3119.00H19E—C19B—H19F109.00
C11—N1—C12—C17170.74 (18)C6—C5—C10—C1178.70 (18)
C12—N1—C11—C1179.24 (17)C6—C5—C10—C92.2 (3)
C11—N1—C12—C139.9 (3)C5—C6—C7—C80.6 (3)
C10—C1—C2—O1178.02 (17)C6—C7—C8—C91.0 (3)
C10—C1—C2—C31.9 (3)C7—C8—C9—C100.3 (3)
C11—C1—C2—O10.0 (3)C8—C9—C10—C1179.09 (19)
C11—C1—C2—C3179.93 (17)C8—C9—C10—C51.9 (3)
C11—C1—C10—C91.8 (3)N1—C12—C13—C14179.28 (18)
C2—C1—C11—N11.1 (3)C17—C12—C13—C140.0 (3)
C10—C1—C11—N1179.17 (17)N1—C12—C17—C16179.89 (17)
C11—C1—C10—C5179.16 (17)C13—C12—C17—C160.8 (3)
C2—C1—C10—C52.8 (3)C12—C13—C14—C151.0 (3)
C2—C1—C10—C9176.24 (17)C12—C13—C14—C18178.05 (19)
O1—C2—C3—C4180.0 (2)C13—C14—C15—C161.2 (3)
C1—C2—C3—C40.1 (3)C18—C14—C15—C16177.85 (19)
C2—C3—C4—C51.2 (3)C13—C14—C18—O259.0 (3)
C3—C4—C5—C6179.3 (2)C13—C14—C18—C19A71.1 (3)
C3—C4—C5—C100.2 (3)C15—C14—C18—O2120.0 (2)
C4—C5—C6—C7178.5 (2)C15—C14—C18—C19A109.8 (3)
C10—C5—C6—C71.0 (3)C14—C15—C16—C170.4 (3)
C4—C5—C10—C11.8 (3)C15—C16—C17—C120.6 (3)
C4—C5—C10—C9177.36 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.862.567 (2)136
O2—H2···O1i0.842.082.710 (2)132
C11—H11···O2ii0.952.553.327 (3)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H17NO2
Mr291.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.9837 (10), 4.740 (2), 16.105 (8)
β (°) 92.927 (9)
V3)1447.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.10 × 0.03
Data collection
DiffractometerRigaku AFC12 (Right)
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax0.982, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
7947, 3169, 2836
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.175, 1.06
No. of reflections3169
No. of parameters200
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.40

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.862.567 (2)136
O2—H2···O1i0.842.082.710 (2)132
C11—H11···O2ii0.952.553.327 (3)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The EPSRC National Crystallography Service is gratefully acknowledged for the X-ray diffraction data. The authors are thankful to Manchester Metropolitan and Erciyes Universitry for supporting this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKeypour, H., Rezaeivala, M., Valencia, L., Perez-Lourido, P. & Khavasi, H. R. (2009). Polyhedron, 28, 3755–3758.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K. B. & Adhikari, D. (2012). Int. J. Basic Appl. Chem. Sci. 2, 84–107.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuslick, K. S. & Reinert, T. J. (1988). J. Chem. Educ. 62, 974–983.  CrossRef Google Scholar
First citationTisato, F., Refosco, F. & Bandoli, G. (1994). Coord. Chem. Rev. 135, 325–397.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds