organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­benz­yl)-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed, Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cInstitute of Nanmaterials and Nanotechnology, MASCIR, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: d_belaziz@yahoo.fr

(Received 12 December 2012; accepted 13 December 2012; online 22 December 2012)

In the title compound, C15H14N2O, the fused five- and six-membered ring system is essentially planar, the maximum deviation from the mean plane being 0.009 (1) Å. The benzimidazol-2(3H)-one residue is nearly perpendicular to the benzyl ring, forming a dihedral angle of 77.41 (6)°. In the crystal, inversion dimers are formed by pairs of N—H⋯O hydrogen bonds; these dimers are linked by weak C—H⋯O inter­actions into a two-dimensional array in the (102) plane.

Related literature

For pharmacological and biochemical properties of benzimidazole derivatives, see: Lee et al. (2004[Lee, Y. H. & Pavlostathis, S. G. (2004). Water Res. 38, 1838-1852.]); Deligeorgiev et al. (2011[Deligeorgiev, T., Kaloyanova, S. & Vasilev, S. (2011). Dyes Pigm. 90, 170-1276.]); Scott et al. (2002[Scott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503-1538.]); Gothelf et al. (1998[Gothelf, K. V. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863-909.]). For related structures, see: Belaziz et al. (2012[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3212.]); Ouzidan et al. (2011[Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O

  • Mr = 238.28

  • Monoclinic, P 21 /n

  • a = 12.5585 (5) Å

  • b = 5.7181 (2) Å

  • c = 17.4153 (7) Å

  • β = 95.277 (2)°

  • V = 1245.31 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.51 × 0.42 × 0.15 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 16486 measured reflections

  • 3211 independent reflections

  • 2157 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.122

  • S = 1.02

  • 3211 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.94 1.91 2.8317 (15) 166
C15—H15C⋯O1ii 0.96 2.58 3.514 (2) 165
C8—H8A⋯O1iii 0.97 2.61 3.5504 (18) 164
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip,2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The development of benzimidazole derivatives has experienced in recent years, a considerable expansion following reports of biological activities presented by this type of compound. Benzimidazole derivatives are endowed with anti-viral, anti-ulcer, anti-hypertensive and anti-cancer activities (Lee et al., 2004; Deligeorgiev et al., 2011; Scott et al., 2002). Heterocycles containing the benzimidazole nucleus are also antagonists of a number of biological receptors, namely angiotensin II and prostaglandin D2 (Gothelf et al., 1998).

In a previous study, we reacted benzimidazol-2-one with dodecyl bromide in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to form 1-dodecyl-1H-benzimidazol-2(3H)-one (Belaziz et al., 2012; Ouzidan et al., 2011). The study is extended to the synthesis of new benzimidazol-2-one derivative by action of methylbenzyl bromide with 1H-benzimidazol-2(3H)-one to form the title compound (Scheme 1).

The crystal structure of the title compound, C15H14N2O, is built up from two fused five- and six-membered rings (C1-C7,N1,N2,O1) linked to (C8-C15) the p-methyl-benzyl residue as shown in Fig. 1. The fused-ring system is essentially planar, with the maximum deviation of 0.009 (1) Å for the N2 atom. The dihedral angle between the benzimidazol-2(3H-one system and the (C9 to C14) benzyl ring is 77.41 (6)°.

In the crystal, inversion dimers are linked by N1—H1N···O1 hydrogen bonds. These are linked by weak C8–H8A···O1 and C15–H15C···O1 non-classic hydrogen bonds to form a layer parallel to (1 0 2); see Fig. 2 and Table 1.

Related literature top

For pharmacological and biochemical properties of benzimidazole derivatives, see: Lee et al. (2004); Deligeorgiev et al. (2011); Scott et al. (2002); Gothelf et al. (1998). For related structures, see: Belaziz et al. (2012); Ouzidan et al. (2011).

Experimental top

To 1H-benzimidazol-2(3H)-one (0.2 g, 1.49 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added methyl benzyl bromide (0.33 g, 1.78 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. The compound was recrystallized from hexane to give colorless crystals.

Refinement top

H atoms were located in a difference map and treated as riding with N—H = 0.94 Å, C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2 Ueq (N, aromatic-C, methylene-C) and Uiso(H) = 1.5 Ueq(methyl-C). Two reflections, i.e. (-1 0 1) and (1 0 1), were omitted owing to poor agreement.

Structure description top

The development of benzimidazole derivatives has experienced in recent years, a considerable expansion following reports of biological activities presented by this type of compound. Benzimidazole derivatives are endowed with anti-viral, anti-ulcer, anti-hypertensive and anti-cancer activities (Lee et al., 2004; Deligeorgiev et al., 2011; Scott et al., 2002). Heterocycles containing the benzimidazole nucleus are also antagonists of a number of biological receptors, namely angiotensin II and prostaglandin D2 (Gothelf et al., 1998).

In a previous study, we reacted benzimidazol-2-one with dodecyl bromide in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to form 1-dodecyl-1H-benzimidazol-2(3H)-one (Belaziz et al., 2012; Ouzidan et al., 2011). The study is extended to the synthesis of new benzimidazol-2-one derivative by action of methylbenzyl bromide with 1H-benzimidazol-2(3H)-one to form the title compound (Scheme 1).

The crystal structure of the title compound, C15H14N2O, is built up from two fused five- and six-membered rings (C1-C7,N1,N2,O1) linked to (C8-C15) the p-methyl-benzyl residue as shown in Fig. 1. The fused-ring system is essentially planar, with the maximum deviation of 0.009 (1) Å for the N2 atom. The dihedral angle between the benzimidazol-2(3H-one system and the (C9 to C14) benzyl ring is 77.41 (6)°.

In the crystal, inversion dimers are linked by N1—H1N···O1 hydrogen bonds. These are linked by weak C8–H8A···O1 and C15–H15C···O1 non-classic hydrogen bonds to form a layer parallel to (1 0 2); see Fig. 2 and Table 1.

For pharmacological and biochemical properties of benzimidazole derivatives, see: Lee et al. (2004); Deligeorgiev et al. (2011); Scott et al. (2002); Gothelf et al. (1998). For related structures, see: Belaziz et al. (2012); Ouzidan et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip,2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Portion of the unit cell showing intermolecular interactions (dashed lines) as detailed in Table 1.
1-(4-Methylbenzyl)-1H-benzimidazol-2(3H)-one top
Crystal data top
C15H14N2OF(000) = 504
Mr = 238.28Dx = 1.271 Mg m3
Monoclinic, P21/nMelting point: 456 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.5585 (5) ÅCell parameters from 3211 reflections
b = 5.7181 (2) Åθ = 3.3–28.7°
c = 17.4153 (7) ŵ = 0.08 mm1
β = 95.277 (2)°T = 296 K
V = 1245.31 (8) Å3Block, colourless
Z = 40.51 × 0.42 × 0.15 mm
Data collection top
Bruker X8 APEXII
diffractometer
2157 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.7°, θmin = 3.3°
φ and ω scansh = 1610
16486 measured reflectionsk = 77
3211 independent reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2271P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3211 reflectionsΔρmax = 0.17 e Å3
164 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (19)
Crystal data top
C15H14N2OV = 1245.31 (8) Å3
Mr = 238.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.5585 (5) ŵ = 0.08 mm1
b = 5.7181 (2) ÅT = 296 K
c = 17.4153 (7) Å0.51 × 0.42 × 0.15 mm
β = 95.277 (2)°
Data collection top
Bruker X8 APEXII
diffractometer
2157 reflections with I > 2σ(I)
16486 measured reflectionsRint = 0.029
3211 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
3211 reflectionsΔρmin = 0.15 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40817 (8)0.80403 (18)0.04185 (6)0.0541 (3)
N10.59419 (10)0.8138 (2)0.06169 (7)0.0456 (3)
H1N10.60360.94780.03170.055*
C60.67241 (12)0.6686 (2)0.09809 (7)0.0416 (3)
N20.50984 (9)0.51864 (19)0.10975 (6)0.0425 (3)
C90.41188 (10)0.3448 (2)0.21353 (8)0.0399 (3)
C50.61861 (11)0.4813 (2)0.12841 (7)0.0405 (3)
C80.42295 (12)0.3671 (2)0.12812 (8)0.0475 (4)
H8A0.43430.21270.10730.057*
H8B0.35650.42730.10290.057*
C40.67330 (13)0.3032 (3)0.16849 (8)0.0498 (4)
H40.63750.17830.18860.060*
C140.44588 (12)0.5170 (2)0.26587 (8)0.0498 (4)
H140.47780.65170.24870.060*
C100.36386 (12)0.1473 (3)0.24098 (9)0.0500 (4)
H100.34030.02910.20690.060*
C70.49498 (12)0.7221 (2)0.06784 (8)0.0425 (3)
C10.78212 (12)0.6843 (3)0.10756 (9)0.0518 (4)
H10.81810.80990.08790.062*
C30.78367 (13)0.3187 (3)0.17738 (9)0.0568 (4)
H30.82280.20120.20390.068*
C120.38486 (12)0.2947 (3)0.37129 (9)0.0568 (4)
C20.83703 (13)0.5043 (3)0.14782 (9)0.0581 (4)
H20.91130.50930.15500.070*
C110.35059 (12)0.1242 (3)0.31856 (9)0.0582 (4)
H110.31780.00950.33560.070*
C130.43294 (13)0.4911 (3)0.34360 (9)0.0580 (4)
H130.45710.60840.37790.070*
C150.37084 (17)0.2654 (5)0.45607 (11)0.0944 (7)
H15A0.39910.40000.48390.142*
H15B0.40840.12810.47530.142*
H15C0.29620.24950.46280.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0523 (7)0.0521 (6)0.0563 (6)0.0055 (5)0.0040 (5)0.0144 (5)
N10.0529 (8)0.0409 (6)0.0424 (7)0.0004 (5)0.0018 (5)0.0097 (5)
C60.0511 (9)0.0410 (7)0.0326 (7)0.0025 (6)0.0027 (6)0.0010 (5)
N20.0466 (7)0.0404 (6)0.0399 (6)0.0001 (5)0.0003 (5)0.0076 (5)
C90.0376 (8)0.0381 (7)0.0431 (8)0.0002 (5)0.0018 (6)0.0029 (5)
C50.0484 (9)0.0403 (7)0.0323 (7)0.0019 (6)0.0006 (6)0.0010 (5)
C80.0535 (9)0.0437 (7)0.0440 (8)0.0072 (6)0.0024 (7)0.0014 (6)
C40.0621 (10)0.0427 (8)0.0432 (8)0.0042 (6)0.0029 (7)0.0051 (6)
C140.0565 (10)0.0425 (8)0.0497 (9)0.0090 (6)0.0009 (7)0.0003 (6)
C100.0496 (9)0.0448 (8)0.0542 (9)0.0094 (6)0.0019 (7)0.0020 (6)
C70.0520 (9)0.0398 (7)0.0348 (7)0.0029 (6)0.0000 (6)0.0033 (5)
C10.0519 (10)0.0568 (9)0.0471 (9)0.0046 (7)0.0063 (7)0.0004 (6)
C30.0599 (11)0.0558 (9)0.0526 (9)0.0145 (7)0.0063 (8)0.0023 (7)
C120.0410 (9)0.0808 (12)0.0485 (9)0.0004 (8)0.0044 (7)0.0068 (8)
C20.0490 (10)0.0715 (11)0.0529 (9)0.0090 (8)0.0000 (7)0.0049 (8)
C110.0481 (10)0.0646 (10)0.0619 (11)0.0107 (7)0.0054 (8)0.0173 (8)
C130.0599 (11)0.0654 (10)0.0478 (9)0.0044 (8)0.0003 (7)0.0104 (7)
C150.0829 (15)0.148 (2)0.0539 (12)0.0091 (14)0.0142 (10)0.0111 (12)
Geometric parameters (Å, º) top
O1—C71.2338 (16)C14—C131.386 (2)
N1—C71.3649 (18)C14—H140.9300
N1—C61.3933 (17)C10—C111.383 (2)
N1—H1N10.9411C10—H100.9300
C6—C11.375 (2)C1—C21.392 (2)
C6—C51.3959 (19)C1—H10.9300
N2—C71.3770 (16)C3—C21.380 (2)
N2—C51.3913 (17)C3—H30.9300
N2—C81.4521 (17)C12—C111.381 (2)
C9—C141.3822 (19)C12—C131.383 (2)
C9—C101.3857 (19)C12—C151.512 (2)
C9—C81.5120 (19)C2—H20.9300
C5—C41.3811 (18)C11—H110.9300
C8—H8A0.9700C13—H130.9300
C8—H8B0.9700C15—H15A0.9600
C4—C31.383 (2)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C7—N1—C6110.24 (11)C9—C10—H10119.7
C7—N1—H1N1121.3O1—C7—N1127.42 (13)
C6—N1—H1N1128.2O1—C7—N2125.97 (13)
C1—C6—N1132.24 (13)N1—C7—N2106.61 (12)
C1—C6—C5121.27 (13)C6—C1—C2117.16 (14)
N1—C6—C5106.49 (12)C6—C1—H1121.4
C7—N2—C5109.63 (11)C2—C1—H1121.4
C7—N2—C8123.58 (12)C2—C3—C4121.57 (14)
C5—N2—C8126.76 (11)C2—C3—H3119.2
C14—C9—C10118.08 (13)C4—C3—H3119.2
C14—C9—C8122.55 (12)C11—C12—C13117.44 (15)
C10—C9—C8119.36 (12)C11—C12—C15120.94 (18)
C4—C5—N2131.55 (13)C13—C12—C15121.61 (17)
C4—C5—C6121.43 (14)C3—C2—C1121.44 (15)
N2—C5—C6107.02 (11)C3—C2—H2119.3
N2—C8—C9113.95 (11)C1—C2—H2119.3
N2—C8—H8A108.8C12—C11—C10121.61 (15)
C9—C8—H8A108.8C12—C11—H11119.2
N2—C8—H8B108.8C10—C11—H11119.2
C9—C8—H8B108.8C12—C13—C14121.43 (15)
H8A—C8—H8B107.7C12—C13—H13119.3
C5—C4—C3117.12 (14)C14—C13—H13119.3
C5—C4—H4121.4C12—C15—H15A109.5
C3—C4—H4121.4C12—C15—H15B109.5
C9—C14—C13120.74 (14)H15A—C15—H15B109.5
C9—C14—H14119.6C12—C15—H15C109.5
C13—C14—H14119.6H15A—C15—H15C109.5
C11—C10—C9120.69 (14)H15B—C15—H15C109.5
C11—C10—H10119.7
C7—N1—C6—C1179.97 (14)C8—C9—C10—C11178.65 (14)
C7—N1—C6—C50.56 (15)C6—N1—C7—O1179.46 (13)
C7—N2—C5—C4179.25 (14)C6—N1—C7—N21.05 (15)
C8—N2—C5—C41.2 (2)C5—N2—C7—O1179.35 (13)
C7—N2—C5—C60.82 (14)C8—N2—C7—O11.3 (2)
C8—N2—C5—C6178.83 (12)C5—N2—C7—N11.15 (15)
C1—C6—C5—C40.6 (2)C8—N2—C7—N1179.24 (12)
N1—C6—C5—C4179.90 (12)N1—C6—C1—C2179.93 (14)
C1—C6—C5—N2179.33 (12)C5—C6—C1—C20.7 (2)
N1—C6—C5—N20.16 (14)C5—C4—C3—C20.3 (2)
C7—N2—C8—C9117.18 (14)C4—C3—C2—C10.1 (2)
C5—N2—C8—C965.08 (17)C6—C1—C2—C30.4 (2)
C14—C9—C8—N226.23 (19)C13—C12—C11—C100.2 (2)
C10—C9—C8—N2155.20 (13)C15—C12—C11—C10179.31 (17)
N2—C5—C4—C3179.82 (14)C9—C10—C11—C120.4 (2)
C6—C5—C4—C30.1 (2)C11—C12—C13—C140.3 (2)
C10—C9—C14—C130.5 (2)C15—C12—C13—C14179.84 (16)
C8—C9—C14—C13179.13 (14)C9—C14—C13—C120.7 (2)
C14—C9—C10—C110.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.941.912.8317 (15)166
C15—H15C···O1ii0.962.583.514 (2)165
C8—H8A···O1iii0.972.613.5504 (18)164
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O
Mr238.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.5585 (5), 5.7181 (2), 17.4153 (7)
β (°) 95.277 (2)
V3)1245.31 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.51 × 0.42 × 0.15
Data collection
DiffractometerBruker X8 APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16486, 3211, 2157
Rint0.029
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.122, 1.02
No. of reflections3211
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip,2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.941.912.8317 (15)166
C15—H15C···O1ii0.962.583.514 (2)165
C8—H8A···O1iii0.972.613.5504 (18)164
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3212.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeligeorgiev, T., Kaloyanova, S. & Vasilev, S. (2011). Dyes Pigm. 90, 170–1276.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGothelf, K. V. & Jørgensen, K. A. (1998). Chem. Rev. 98, 863–909.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, Y. H. & Pavlostathis, S. G. (2004). Water Res. 38, 1838–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503–1538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds