[Journal logo]

Volume 69 
Part 1 
Pages o58-o59  
January 2013  

Received 22 November 2012
Accepted 5 December 2012
Online 8 December 2012

Key indicators
Single-crystal X-ray study
T = 190 K
Mean [sigma](C-C) = 0.004 Å
Disorder in main residue
R = 0.056
wR = 0.127
Data-to-parameter ratio = 18.8
Details
Open access

3-{3,5-Bis[(2-butoxyethoxy)carbonyl]-2,6-dimethyl-1,4-dihydropyridin-4-yl}-1-[(3,4,5-trimethoxybenzoyl)methyl]pyridinium bromide

aLatvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006, Latvia
Correspondence e-mail: mishnevs@osi.lv

In the title salt, C37H51N2O10+·Br-, the 1,4-dihydropyridine (1,4-DHP) ring adopts a slighly puckered boat conformation. The N and opposite C atoms deviate from the least-squares plane calculated through the four other ring atoms by 0.068 (5) and 0.224 (5) Å, respectively. The orientation of both C=O groups is similar (cis with respect to the double bonds of 1,4-DHP. The pyridinium ring has an axial orientation with respect to the1,4-DHP ring and is almost perpendicular to the least-squares plane of the 1,4-DHP ring, making a dihedral angle of 89.2 (3)°. The molecule has a compact shape due to the parallel orientation of the long-chain substituents. One of the butoxy groups was fond to be disordered (occupancy ratio 0.70:0.30). In the crystal, the bromide anion accepts a weak hydrogen bond from the N-H group of a neighboring 1,4-DHP ring.

Related literature

For general information on the relationship between 1,4-dihydropyridine ring substituents and pharmaceutical effects, see: Hasko & Pacher (2008[Hasko, G. & Pacher, P. (2008). J. Leukoc. Biol. 83, 447-455.]); Niebauer & Robinson (2006[Niebauer, R. T. & Robinson, A. S. (2006). Protein Expres. Purif. 46, 204-211.]); Ruiz et al. (2012[Ruiz, E., Rodriguez, H., Coro, J., Niebla, V., Rodriguez, A., Martinez-Alvarez, R., Novoa de Armas, H., Suarez, M. & Nazario, M. (2012). Ultrason. Sonochem. 19, 221-226.]); Swarnalatha et al. (2011[Swarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75-89.]). For the synthesis of the DHP 3-pyridyl derivative, see: Saini et al. (2008[Saini, A., Kumar, S. & Sandhu, J. S. J. (2008). J. Sci. Ind. Res. 67, 95-111.]).

[Scheme 1]

Experimental

Crystal data
  • C37H51N2O10+·Br-

  • Mr = 763.71

  • Triclinic, [P \overline 1]

  • a = 8.9501 (2) Å

  • b = 12.4741 (3) Å

  • c = 17.6994 (5) Å

  • [alpha] = 93.057 (1)°

  • [beta] = 91.658 (1)°

  • [gamma] = 108.024 (1)°

  • V = 1874.25 (8) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 1.16 mm-1

  • T = 190 K

  • 0.32 × 0.18 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 13618 measured reflections

  • 8822 independent reflections

  • 6509 reflections with I > 2[sigma](I)

  • Rint = 0.035

Refinement
  • R[F2 > 2[sigma](F2)] = 0.056

  • wR(F2) = 0.127

  • S = 1.03

  • 8822 reflections

  • 469 parameters

  • 4 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 1.15 e Å-3

  • [Delta][rho]min = -0.41 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...Br1i 0.86 2.61 3.421 (2) 157
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2184 ).


Acknowledgements

The study was supported by the Latvian National Research programme 2010-2013 `Development of prevention, treatment, diagnostic means and practices, and biomedicine technologies for improvement of public health'.

References

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Hasko, G. & Pacher, P. (2008). J. Leukoc. Biol. 83, 447-455.  [ISI] [CrossRef] [PubMed] [ChemPort]
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Niebauer, R. T. & Robinson, A. S. (2006). Protein Expres. Purif. 46, 204-211.  [CrossRef] [ChemPort]
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
Ruiz, E., Rodriguez, H., Coro, J., Niebla, V., Rodriguez, A., Martinez-Alvarez, R., Novoa de Armas, H., Suarez, M. & Nazario, M. (2012). Ultrason. Sonochem. 19, 221-226.  [ISI] [CSD] [CrossRef] [ChemPort] [PubMed]
Saini, A., Kumar, S. & Sandhu, J. S. J. (2008). J. Sci. Ind. Res. 67, 95-111.  [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Swarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75-89.  [ChemPort]


Acta Cryst (2013). E69, o58-o59   [ doi:10.1107/S1600536812049896 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.