[Journal logo]

Volume 69 
Part 1 
Pages m7-m8  
January 2013  

Received 8 November 2012
Accepted 27 November 2012
Online 5 December 2012

Key indicators
Single-crystal X-ray study
T = 140 K
Mean [sigma](C-C) = 0.002 Å
R = 0.018
wR = 0.048
Data-to-parameter ratio = 9.4
Details
Open access

Potassium (1R,4R,5S,8S)-4,5,8-trihydroxy-3-oxo-2,6-dioxabicyclo[3.3.0]octane-4-sulfonate dihydrate

aSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
Correspondence e-mail: a.haines@uea.ac.uk, d.l.hughes@uea.ac.uk

The title salt, K+·C6H7O9S-·2H2O, formed by reaction of dehydro-L-ascorbic acid with potassium hydrogen sulfite in water, crystallizes as colourless plates. The potassium ion is coordinated by eight O atoms arising from hydroxy or sulfonate groups. The sulfonate group is bonded to the C atom neighbouring that of the lactone carbonyl group. As is commonly observed in crystalline L-ascorbic acid derivatives, the O atom of the primary hydroxy group is linked to the second C atom from the lactone C atom, forming a hemi-acetal function, thereby creating a bicyclic system of two fused five-membered rings, both of which have envelope conformations with one of the shared C atoms as the flap. Addition of the sulfur nucleophile occurs from the less hindered face. One of the two independent lattice water molecules has hydrogen bonds to sulfonate O atoms of two different anions and is the acceptor of bonds from hydroxy groups of two further anions; the second lattice water molecule donates to the carbonyl and a hydroxy O atom in different anions, and accepts from a hydroxy O atom in a further anion. Thus, through K-O coordination and hydrogen bonds, the potassium cations, sulfonate anions and water molecules are linked in a three-dimensional network.

Related literature

For the first synthesis of the title compound, see: Ingles (1961[Ingles, D. L. (1961). Aust. J. Chem. 14, 302-307.]). For related studies on crystalline properties of hydrogen sulfite addition products of carbohydrates and their structures, see: Cole et al. (2001[Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.]); Haines & Hughes (2010[Haines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705-2708.], 2012[Haines, A. H. & Hughes, D. L. (2012). Acta Cryst. E68, m377-m378.]). For examples of related bicyclic structures based on dehydro-L-ascorbic acid, see: Hvoslef (1972[Hvoslef, J. (1972). Acta Cryst. B28, 916-923.]); Yvin et al. (1982[Yvin, J.-C., Chevolot-Magueur, A.-M., Chevolot, L., Lallemand, J.-Y., Potier, P. & Guilhem, J. (1982). J. Am. Chem. Soc. 104, 4497-4498.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H7O9S-·2H2O

  • Mr = 330.31

  • Orthorhombic, P 21 21 21

  • a = 6.21040 (15) Å

  • b = 6.93014 (16) Å

  • c = 26.7851 (7) Å

  • V = 1152.80 (5) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.70 mm-1

  • T = 140 K

  • 0.80 × 0.40 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.851, Tmax = 1.000

  • 15452 measured reflections

  • 2022 independent reflections

  • 2012 reflections with I > 2[sigma](I)

  • Rint = 0.026

Refinement
  • R[F2 > 2[sigma](F2)] = 0.018

  • wR(F2) = 0.048

  • S = 1.13

  • 2022 reflections

  • 214 parameters

  • All H-atom parameters refined

  • [Delta][rho]max = 0.22 e Å-3

  • [Delta][rho]min = -0.24 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 806 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O2-H2O...O8i 0.77 (3) 1.91 (3) 2.6533 (18) 162 (3)
O3-H3O...O8 0.79 (3) 1.87 (3) 2.6525 (18) 171 (3)
O5-H5O...O9ii 0.70 (3) 2.01 (3) 2.684 (2) 162 (3)
O8-H8OA...O22iii 0.81 (3) 2.07 (3) 2.8141 (18) 155 (3)
O8-H8OB...O23i 0.78 (3) 2.13 (3) 2.7798 (18) 142 (2)
O9-H9OA...O5iv 0.77 (3) 2.13 (3) 2.869 (2) 161 (3)
O9-H9OB...O1 0.83 (3) 1.95 (3) 2.7852 (19) 175 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) x-1, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2701 ).


Acknowledgements

We thank the EPSRC National Mass Spectrometry Service Centre at Swansea for determination of the low- and high-resolution mass spectra.

References

Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Haines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705-2708.  [ISI] [CSD] [CrossRef] [ChemPort] [PubMed]
Haines, A. H. & Hughes, D. L. (2012). Acta Cryst. E68, m377-m378.  [CSD] [CrossRef] [details]
Hvoslef, J. (1972). Acta Cryst. B28, 916-923.  [CrossRef] [ChemPort] [details] [ISI]
Ingles, D. L. (1961). Aust. J. Chem. 14, 302-307.  [CrossRef] [ChemPort]
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Yvin, J.-C., Chevolot-Magueur, A.-M., Chevolot, L., Lallemand, J.-Y., Potier, P. & Guilhem, J. (1982). J. Am. Chem. Soc. 104, 4497-4498.  [CrossRef] [ChemPort] [ISI]


Acta Cryst (2013). E69, m7-m8   [ doi:10.1107/S1600536812048672 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.