organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Phenyl-N-tosyl­non-2-en-4-ynamide

aDepartment of Chemistry and Life Science, Chaohu College, Anhui Province, People's Republic of China
*Correspondence e-mail: wzys2012@126.com

(Received 22 November 2012; accepted 26 November 2012; online 12 December 2012)

The mol­ecule of the title compound, C22H23NO3S, adopts an E conformation about the C=C bond. The dihedral angle between the benzene rings is 23.79 (5)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules, forming inversion dimers. The terminal butyl group is disordered over two sets of sites in a 0.559 (6):0.441 (6) ratio.

Related literature

For the synthesis of the titlw compound, see: Cheng et al. (2012[Cheng, D., Ling, F., Li, Z.-X., Yao, W.-J. & Ma, C. (2012). Org. Lett. 14, 3146-3149.]). For applications of conjugated enynes, see: Ochiai et al. (1999[Ochiai, B., Tomita, I. & Endo, T. (1999). Macromolecules, 32, 238-240.]); Saito et al. (2001[Saito, S., Kawasaki, T., Tsuboya, N. & Yamamoto, Y. (2001). J. Org. Chem. 66, 796-802.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23NO3S

  • Mr = 381.47

  • Triclinic, [P \overline 1]

  • a = 9.8186 (10) Å

  • b = 9.8201 (9) Å

  • c = 11.3352 (13) Å

  • α = 81.470 (8)°

  • β = 76.308 (9)°

  • γ = 75.042 (9)°

  • V = 1021.46 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.42 × 0.38 × 0.32 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.928, Tmax = 0.945

  • 9118 measured reflections

  • 4425 independent reflections

  • 3005 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.096

  • S = 1.00

  • 4425 reflections

  • 285 parameters

  • 170 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.32 2.947 (2) 130
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Conjugated enynes can be used in the synthesis of polymers (Ochiai et al., 1999) and in the selective construction of aromatic frameworks (Saito et al., 2001). Here, we report the crystal structure of the title enyne compound.

The molecular structure of the title compound is shown in Figure 1, the ORTEP diagram shows that the structure adopts the E isomer, the double bond and triple bond are within normal ranges. The benzene C2–C7 and C10–C15 rings are tilted relative to each other by 23.79 (5)°. The chain C19—C22 is disorder. A view of the crystal packing for the title compound is illustrated in Fig. 2, the crystal structure is stabilized by N—H···O hydrogen bonds.

Related literature top

For the synthesis of the titlw compound, see: Cheng et al. (2012). For applications of conjugated enynes, see: Ochiai et al. (1999); Saito et al. (2001).

Experimental top

The compound was prepared according to the reference (Cheng et al., 2012). 4-Methylbenzenesulfonyl azide (0.45 mmol), CuI (5.7 mg, 0.03 mmol), ethynylbenzene (0.45 mmol), and hept-2-ynal (0.3 mmol) were suspended in THF in a 10 ml Schlenk tube at room temperature at N2 atmosphere. Cs2CO3 (8.64 mg, 0.36 mmol) was then added, and the resulting solution was stirred at this temperature for 24 h. The reaction was quenched by saturated aqueous NH4Cl (5 ml) and extracted with CH2Cl2 (15 ml × 3). The combined organic layers were dried over anhydrous Na2SO4 and concentrated in vacuo. The crude residue was purified by column chromatography on silica gel (n-hexane/EtOAc) to afford the title compound. The title compound was recrystallized from CH2Cl2 at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.93–0.97 Å and N—H = 0.86 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others. The butyl group is disordered over two positions, site occupancies were refined.

Structure description top

Conjugated enynes can be used in the synthesis of polymers (Ochiai et al., 1999) and in the selective construction of aromatic frameworks (Saito et al., 2001). Here, we report the crystal structure of the title enyne compound.

The molecular structure of the title compound is shown in Figure 1, the ORTEP diagram shows that the structure adopts the E isomer, the double bond and triple bond are within normal ranges. The benzene C2–C7 and C10–C15 rings are tilted relative to each other by 23.79 (5)°. The chain C19—C22 is disorder. A view of the crystal packing for the title compound is illustrated in Fig. 2, the crystal structure is stabilized by N—H···O hydrogen bonds.

For the synthesis of the titlw compound, see: Cheng et al. (2012). For applications of conjugated enynes, see: Ochiai et al. (1999); Saito et al. (2001).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing diagram.
(E)-2-Phenyl-N-tosylnon-2-en-4-ynamide top
Crystal data top
C22H23NO3SZ = 2
Mr = 381.47F(000) = 404
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8186 (10) ÅCell parameters from 2435 reflections
b = 9.8201 (9) Åθ = 2.9–29.6°
c = 11.3352 (13) ŵ = 0.18 mm1
α = 81.470 (8)°T = 293 K
β = 76.308 (9)°Block, colorless
γ = 75.042 (9)°0.42 × 0.38 × 0.32 mm
V = 1021.46 (18) Å3
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
4425 independent reflections
Radiation source: fine-focus sealed tube3005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.3592 pixels mm-1θmax = 27.1°, θmin = 2.9°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.928, Tmax = 0.945l = 1413
9118 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0145P)2 + 0.450P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4425 reflectionsΔρmax = 0.19 e Å3
285 parametersΔρmin = 0.28 e Å3
170 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0511 (16)
Crystal data top
C22H23NO3Sγ = 75.042 (9)°
Mr = 381.47V = 1021.46 (18) Å3
Triclinic, P1Z = 2
a = 9.8186 (10) ÅMo Kα radiation
b = 9.8201 (9) ŵ = 0.18 mm1
c = 11.3352 (13) ÅT = 293 K
α = 81.470 (8)°0.42 × 0.38 × 0.32 mm
β = 76.308 (9)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
4425 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3005 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.945Rint = 0.028
9118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048170 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
4425 reflectionsΔρmin = 0.28 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.49748 (6)0.27503 (5)0.07181 (5)0.04966 (17)
O10.56428 (17)0.13893 (14)0.11958 (14)0.0656 (4)
O20.58196 (15)0.35117 (14)0.02248 (13)0.0575 (4)
O30.3159 (2)0.23691 (16)0.31525 (14)0.0779 (5)
N10.43740 (19)0.38162 (16)0.18182 (15)0.0518 (5)
H10.46170.46140.17020.062*
C10.0183 (3)0.2430 (4)0.1135 (4)0.1257 (13)
H1A0.10110.24830.04780.189*
H1B0.00110.15550.14950.189*
H1C0.03680.32100.17410.189*
C20.2639 (3)0.3857 (2)0.0279 (2)0.0631 (6)
H20.28780.47240.03310.076*
C30.1480 (3)0.3764 (3)0.0711 (2)0.0757 (7)
H30.09320.45790.10530.091*
C40.1106 (3)0.2494 (3)0.0651 (2)0.0753 (8)
C50.1929 (3)0.1314 (3)0.0146 (3)0.0774 (8)
H50.16950.04460.01050.093*
C60.3097 (3)0.1372 (2)0.0305 (2)0.0608 (6)
H60.36380.05570.06520.073*
C70.3449 (2)0.26491 (19)0.02339 (17)0.0464 (5)
C80.3496 (2)0.3491 (2)0.29221 (19)0.0529 (5)
C90.3001 (2)0.4641 (2)0.37598 (18)0.0483 (5)
C100.3535 (2)0.5957 (2)0.34604 (17)0.0461 (5)
C110.2602 (3)0.7245 (2)0.3255 (2)0.0645 (6)
H110.16390.72810.32850.077*
C120.3082 (4)0.8474 (3)0.3008 (2)0.0830 (9)
H120.24420.93330.28710.100*
C130.4484 (4)0.8444 (3)0.2964 (2)0.0825 (9)
H130.48030.92780.27900.099*
C140.5422 (3)0.7185 (3)0.3175 (2)0.0743 (7)
H140.63790.71630.31580.089*
C150.4949 (3)0.5942 (2)0.3415 (2)0.0576 (6)
H150.55970.50860.35470.069*
C160.2024 (3)0.4427 (2)0.4767 (2)0.0615 (6)
H160.17150.35880.48880.074*
C170.1426 (3)0.5407 (3)0.5667 (2)0.0658 (7)
C180.0934 (3)0.6244 (3)0.6390 (2)0.0734 (7)
C190.0400 (14)0.7233 (10)0.7344 (10)0.096 (4)0.559 (6)
H19A0.08230.68390.80480.115*0.559 (6)
H19B0.06390.73860.76000.115*0.559 (6)
C200.0816 (6)0.8656 (7)0.6826 (7)0.099 (2)0.559 (6)
H20A0.03680.93390.74220.119*0.559 (6)
H20B0.04270.90080.61000.119*0.559 (6)
C210.2508 (6)0.8559 (7)0.6491 (7)0.0798 (19)0.559 (6)
H21A0.29150.81230.71950.096*0.559 (6)
H21B0.29450.79490.58370.096*0.559 (6)
C220.2860 (10)0.9846 (8)0.6137 (9)0.121 (3)0.559 (6)
H22A0.38870.97170.59860.181*0.559 (6)
H22B0.24161.04650.67720.181*0.559 (6)
H22C0.25211.02570.54060.181*0.559 (6)
C19A0.0304 (13)0.7466 (14)0.7125 (13)0.084 (3)0.441 (6)
H19C0.03260.71860.78690.101*0.441 (6)
H19D0.02690.82200.66700.101*0.441 (6)
C20A0.1514 (10)0.8022 (9)0.7455 (6)0.096 (2)0.441 (6)
H20C0.23420.72660.75740.115*0.441 (6)
H20D0.11620.85560.81640.115*0.441 (6)
C21A0.1841 (16)0.8992 (12)0.6240 (9)0.124 (3)0.441 (6)
H21C0.27090.84270.57770.149*0.441 (6)
H21D0.10800.89860.58310.149*0.441 (6)
C22A0.2024 (16)1.0297 (11)0.5965 (14)0.160 (5)0.441 (6)
H22D0.29381.02830.54190.239*0.441 (6)
H22E0.20001.06930.66970.239*0.441 (6)
H22F0.12661.08640.55800.239*0.441 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0597 (3)0.0411 (3)0.0472 (3)0.0092 (2)0.0053 (3)0.0148 (2)
O10.0807 (11)0.0439 (8)0.0695 (11)0.0011 (7)0.0232 (9)0.0118 (7)
O20.0599 (9)0.0561 (8)0.0546 (9)0.0175 (7)0.0046 (7)0.0182 (7)
O30.1151 (15)0.0594 (9)0.0603 (10)0.0392 (10)0.0058 (10)0.0144 (8)
N10.0683 (12)0.0441 (9)0.0449 (10)0.0186 (8)0.0025 (9)0.0154 (8)
C10.081 (2)0.166 (3)0.153 (3)0.021 (2)0.040 (2)0.074 (3)
C20.0676 (16)0.0556 (13)0.0668 (16)0.0143 (12)0.0147 (13)0.0064 (11)
C30.0676 (17)0.0838 (18)0.0725 (18)0.0055 (14)0.0183 (14)0.0122 (14)
C40.0601 (16)0.099 (2)0.0725 (17)0.0169 (15)0.0041 (14)0.0429 (16)
C50.0717 (18)0.0737 (17)0.094 (2)0.0262 (15)0.0009 (16)0.0413 (15)
C60.0693 (16)0.0480 (12)0.0651 (15)0.0148 (11)0.0040 (12)0.0193 (11)
C70.0553 (13)0.0445 (11)0.0385 (11)0.0129 (9)0.0000 (9)0.0141 (9)
C80.0640 (14)0.0505 (12)0.0462 (12)0.0160 (11)0.0087 (11)0.0104 (10)
C90.0536 (13)0.0529 (11)0.0409 (12)0.0134 (10)0.0089 (10)0.0116 (9)
C100.0568 (13)0.0477 (11)0.0338 (10)0.0093 (10)0.0079 (9)0.0112 (8)
C110.0732 (16)0.0630 (14)0.0511 (14)0.0033 (12)0.0158 (12)0.0035 (11)
C120.117 (3)0.0498 (14)0.0658 (17)0.0027 (15)0.0091 (17)0.0021 (12)
C130.131 (3)0.0585 (16)0.0590 (16)0.0407 (18)0.0002 (17)0.0082 (12)
C140.0855 (19)0.0792 (18)0.0674 (17)0.0391 (15)0.0066 (14)0.0155 (14)
C150.0634 (15)0.0532 (12)0.0585 (14)0.0144 (11)0.0116 (12)0.0122 (10)
C160.0682 (15)0.0689 (14)0.0531 (14)0.0278 (12)0.0043 (12)0.0164 (11)
C170.0645 (15)0.0796 (16)0.0535 (14)0.0271 (13)0.0059 (12)0.0179 (13)
C180.0740 (17)0.0854 (17)0.0586 (15)0.0279 (14)0.0098 (13)0.0216 (14)
C190.118 (6)0.085 (5)0.071 (5)0.028 (4)0.022 (4)0.029 (4)
C200.101 (4)0.097 (4)0.096 (5)0.024 (4)0.005 (4)0.041 (4)
C210.089 (4)0.089 (4)0.066 (3)0.018 (3)0.024 (3)0.016 (3)
C220.143 (7)0.104 (6)0.130 (6)0.056 (5)0.011 (6)0.037 (5)
C19A0.095 (6)0.092 (6)0.058 (5)0.026 (5)0.018 (4)0.030 (5)
C20A0.117 (6)0.110 (5)0.063 (4)0.030 (4)0.006 (4)0.031 (4)
C21A0.139 (7)0.145 (7)0.099 (6)0.068 (6)0.015 (6)0.042 (5)
C22A0.197 (11)0.108 (7)0.121 (8)0.018 (8)0.002 (9)0.009 (6)
Geometric parameters (Å, º) top
S1—O11.4179 (15)C14—C151.384 (3)
S1—O21.4329 (14)C14—H140.9300
S1—N11.6488 (15)C15—H150.9300
S1—C71.743 (2)C16—C171.424 (3)
O3—C81.205 (2)C16—H160.9300
N1—C81.387 (3)C17—C181.178 (3)
N1—H10.8600C18—C191.472 (6)
C1—C41.512 (4)C18—C19A1.479 (7)
C1—H1A0.9600C19—C201.550 (8)
C1—H1B0.9600C19—H19A0.9700
C1—H1C0.9600C19—H19B0.9700
C2—C31.368 (3)C20—C211.595 (6)
C2—C71.380 (3)C20—H20A0.9700
C2—H20.9300C20—H20B0.9700
C3—C41.377 (3)C21—C221.374 (6)
C3—H30.9300C21—H21A0.9700
C4—C51.365 (4)C21—H21B0.9700
C5—C61.378 (3)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—C71.371 (3)C22—H22C0.9600
C6—H60.9300C19A—C20A1.567 (9)
C8—C91.493 (3)C19A—H19C0.9700
C9—C161.335 (3)C19A—H19D0.9700
C9—C101.482 (3)C20A—C21A1.570 (8)
C10—C151.373 (3)C20A—H20C0.9700
C10—C111.382 (3)C20A—H20D0.9700
C11—C121.373 (3)C21A—C22A1.321 (8)
C11—H110.9300C21A—H21C0.9700
C12—C131.358 (4)C21A—H21D0.9700
C12—H120.9300C22A—H22D0.9600
C13—C141.365 (4)C22A—H22E0.9600
C13—H130.9300C22A—H22F0.9600
O1—S1—O2118.88 (10)C15—C14—H14120.0
O1—S1—N1109.36 (9)C10—C15—C14120.8 (2)
O2—S1—N1103.78 (8)C10—C15—H15119.6
O1—S1—C7109.46 (9)C14—C15—H15119.6
O2—S1—C7109.04 (9)C9—C16—C17123.9 (2)
N1—S1—C7105.40 (9)C9—C16—H16118.1
C8—N1—S1123.31 (13)C17—C16—H16118.1
C8—N1—H1118.3C18—C17—C16178.4 (3)
S1—N1—H1118.3C17—C18—C19175.8 (7)
C4—C1—H1A109.5C17—C18—C19A170.7 (8)
C4—C1—H1B109.5C19—C18—C19A12.7 (12)
H1A—C1—H1B109.5C18—C19—C20108.9 (6)
C4—C1—H1C109.5C18—C19—H19A109.9
H1A—C1—H1C109.5C20—C19—H19A109.9
H1B—C1—H1C109.5C18—C19—H19B109.9
C3—C2—C7119.2 (2)C20—C19—H19B109.9
C3—C2—H2120.4H19A—C19—H19B108.3
C7—C2—H2120.4C19—C20—C21114.3 (9)
C2—C3—C4121.6 (3)C19—C20—H20A108.7
C2—C3—H3119.2C21—C20—H20A108.7
C4—C3—H3119.2C19—C20—H20B108.7
C5—C4—C3118.0 (2)C21—C20—H20B108.7
C5—C4—C1121.8 (3)H20A—C20—H20B107.6
C3—C4—C1120.2 (3)C22—C21—C20113.8 (6)
C4—C5—C6121.8 (2)C22—C21—H21A108.8
C4—C5—H5119.1C20—C21—H21A108.8
C6—C5—H5119.1C22—C21—H21B108.8
C7—C6—C5119.1 (2)C20—C21—H21B108.8
C7—C6—H6120.5H21A—C21—H21B107.7
C5—C6—H6120.5C18—C19A—C20A110.9 (8)
C6—C7—C2120.2 (2)C18—C19A—H19C109.5
C6—C7—S1120.43 (17)C20A—C19A—H19C109.5
C2—C7—S1119.29 (16)C18—C19A—H19D109.5
O3—C8—N1121.30 (18)C20A—C19A—H19D109.5
O3—C8—C9124.1 (2)H19C—C19A—H19D108.0
N1—C8—C9114.59 (17)C19A—C20A—C21A97.2 (11)
C16—C9—C10122.48 (18)C19A—C20A—H20C112.3
C16—C9—C8116.03 (19)C21A—C20A—H20C112.3
C10—C9—C8121.45 (17)C19A—C20A—H20D112.3
C15—C10—C11118.2 (2)C21A—C20A—H20D112.3
C15—C10—C9121.44 (19)H20C—C20A—H20D109.9
C11—C10—C9120.4 (2)C22A—C21A—C20A135.1 (11)
C12—C11—C10120.7 (3)C22A—C21A—H21C103.4
C12—C11—H11119.6C20A—C21A—H21C103.4
C10—C11—H11119.6C22A—C21A—H21D103.4
C13—C12—C11120.5 (3)C20A—C21A—H21D103.4
C13—C12—H12119.8H21C—C21A—H21D105.2
C11—C12—H12119.8C21A—C22A—H22D109.5
C12—C13—C14119.8 (2)C21A—C22A—H22E109.5
C12—C13—H13120.1H22D—C22A—H22E109.5
C14—C13—H13120.1C21A—C22A—H22F109.5
C13—C14—C15120.0 (3)H22D—C22A—H22F109.5
C13—C14—H14120.0H22E—C22A—H22F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.322.947 (2)130
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H23NO3S
Mr381.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.8186 (10), 9.8201 (9), 11.3352 (13)
α, β, γ (°)81.470 (8), 76.308 (9), 75.042 (9)
V3)1021.46 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.42 × 0.38 × 0.32
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.928, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
9118, 4425, 3005
Rint0.028
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.096, 1.00
No. of reflections4425
No. of parameters285
No. of restraints170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.322.947 (2)130
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The work was supported financially by the Chaohu College Project (XLY–201105).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCheng, D., Ling, F., Li, Z.-X., Yao, W.-J. & Ma, C. (2012). Org. Lett. 14, 3146–3149.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOchiai, B., Tomita, I. & Endo, T. (1999). Macromolecules, 32, 238–240.  Web of Science CrossRef CAS Google Scholar
First citationSaito, S., Kawasaki, T., Tsuboya, N. & Yamamoto, Y. (2001). J. Org. Chem. 66, 796–802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds