metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butan-1-aminium tetra­chlorido­ferrate(III)–18-crown-6 (1/1)

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zhangshelley86@Hotmail.com

(Received 1 December 2012; accepted 6 December 2012; online 12 December 2012)

In the crystal of the title compound, (C4H12N)[FeCl4]·C12H24O6, the butan-1-aminium cation and the tetra­chloridoferrate(III) anion have m symmetry: in the cation, the non-H atoms are located on the mirror plane and in the anion, the FeIII atom and two Cl atoms are located on the mirror plane. The 18-crown-6 mol­ecule also has m symmetry, with two O atoms located on the mirror plane. The butan-1-amine cation and the 18-crown-6 mol­ecule are connected by N—H⋯O hydrogen bonds.

Related literature

For related co-crystals of (18-crown-6)] and anilinium salts, see: Akutagawa et al. (2009[Akutagawa, T., Koshinaka, H., Sato, D., Takeda, S., Noro, S., Takahashi, H., Kumai, R., Tokura, Y. & Nakamura, T. (2009). Nat. Mater. 8, 342-347.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N)[FeCl4]·C12H24O6

  • Mr = 536.11

  • Orthorhombic, P n m a

  • a = 9.3109 (19) Å

  • b = 11.431 (2) Å

  • c = 24.718 (5) Å

  • V = 2630.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.665, Tmax = 0.820

  • 24682 measured reflections

  • 3160 independent reflections

  • 1649 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.234

  • S = 1.04

  • 3160 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.90 2.07 2.963 (5) 176
N1—H1B⋯O3 0.90 2.07 2.966 (4) 175

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several supramolecular rotators of [(Ani)(18-crown-6)]+ and [(Ani)(dibenzo18-crown-6)]+ in [Ni(dmit)2]- salts (dmit2- = 2-thioxo-1,3,dithiole-4,5-dithiolate; Ani+ = anilinium) have been reported, of which some display novel ferroelectric features (Akutagawa et al., 2009). There is a class of transition metal complexes whose electronic and magnetic properties in the solid state arise from the extended π-ligands (π-electrons and π-spins). So we try to replace the amine, crown ether and [Ni(dmit)2]- salts. Herein, we report the [tetrachloro-iron-anion] which replace the [Ni(dmit)2]- salts providing high electrical conductivity.

Supramolecular rotators was assembled between protonated butan-1-amine (C4H9NH3)+and 18-crown-6 by of hydrogen-bonding. The ammonium moieties of (–NH3+) cations were interacted with the six oxygen atoms of crown ethers through six simple N–H···O hydrogen bonding, forming 1:1 (one crown ether ring per ammonium group) supramolecular rotator-stator structures. The FeCl4- anions are relatively small for embedding large and structurally diverse supramolecular cations in the crystal lattice. Again, such a feature further supports the fact that the size and shape of the supramolecular assemblies between C4H9NH3+ and crown ethers are strongly affected by the proton-transfer state.

Related literature top

For related co-crystals of (18-crown-6)] and anilinium salts, see: Akutagawa et al. (2009).

Experimental top

C4H9NH2.HCl(4 mmol, 0.442 g) and 18-crown-6 (4 mmol, 1.056 g) were dissolved in methanol solution. After addition of tervalent ferric chloride (4 mmol, 1.08 g) in concentrated hydrochloric acid medium, the precipitate was filtered and washed with a small amount of methanol. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of methanol and DMF solution at room temperature after two days.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2eq(C).

Structure description top

Several supramolecular rotators of [(Ani)(18-crown-6)]+ and [(Ani)(dibenzo18-crown-6)]+ in [Ni(dmit)2]- salts (dmit2- = 2-thioxo-1,3,dithiole-4,5-dithiolate; Ani+ = anilinium) have been reported, of which some display novel ferroelectric features (Akutagawa et al., 2009). There is a class of transition metal complexes whose electronic and magnetic properties in the solid state arise from the extended π-ligands (π-electrons and π-spins). So we try to replace the amine, crown ether and [Ni(dmit)2]- salts. Herein, we report the [tetrachloro-iron-anion] which replace the [Ni(dmit)2]- salts providing high electrical conductivity.

Supramolecular rotators was assembled between protonated butan-1-amine (C4H9NH3)+and 18-crown-6 by of hydrogen-bonding. The ammonium moieties of (–NH3+) cations were interacted with the six oxygen atoms of crown ethers through six simple N–H···O hydrogen bonding, forming 1:1 (one crown ether ring per ammonium group) supramolecular rotator-stator structures. The FeCl4- anions are relatively small for embedding large and structurally diverse supramolecular cations in the crystal lattice. Again, such a feature further supports the fact that the size and shape of the supramolecular assemblies between C4H9NH3+ and crown ethers are strongly affected by the proton-transfer state.

For related co-crystals of (18-crown-6)] and anilinium salts, see: Akutagawa et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Butan-1-aminium tetrachloridoferrate(III)–1,4,7,10,13,16- hexaoxacyclooctadecane (1/1) top
Crystal data top
(C4H12N)[FeCl4]·C12H24O6F(000) = 1124
Mr = 536.11Dx = 1.354 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3160 reflections
a = 9.3109 (19) Åθ = 2.4–27.5°
b = 11.431 (2) ŵ = 1.01 mm1
c = 24.718 (5) ÅT = 293 K
V = 2630.8 (9) Å3Prism, colorless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3160 independent reflections
Radiation source: fine-focus sealed tube1649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.665, Tmax = 0.820l = 3232
24682 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0881P)2 + 3.1745P]
where P = (Fo2 + 2Fc2)/3
3160 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
(C4H12N)[FeCl4]·C12H24O6V = 2630.8 (9) Å3
Mr = 536.11Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.3109 (19) ŵ = 1.01 mm1
b = 11.431 (2) ÅT = 293 K
c = 24.718 (5) Å0.40 × 0.30 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
3160 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1649 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.820Rint = 0.090
24682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.234H-atom parameters constrained
S = 1.04Δρmax = 0.74 e Å3
3160 reflectionsΔρmin = 0.40 e Å3
142 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.22073 (9)0.25000.88238 (3)0.0713 (3)
Cl10.4469 (2)0.25000.86376 (15)0.1792 (13)
Cl20.0976 (2)0.25000.80773 (6)0.0961 (6)
Cl30.1710 (3)0.40675 (17)0.92687 (8)0.1835 (8)
N10.3475 (4)0.75000.65867 (15)0.0562 (11)
H1A0.34300.75000.69500.084*
H1B0.30340.81430.64570.084*
C80.5254 (9)0.75000.5846 (4)0.133 (3)
H8A0.47800.68240.57000.159*
C90.6662 (8)0.75000.5629 (4)0.129 (3)
H9A0.71390.68220.57710.155*
C70.4966 (7)0.75000.6410 (3)0.131 (4)
H7A0.54300.68220.65590.157*
C100.6838 (10)0.75000.5070 (4)0.175 (5)
H10A0.78370.75000.49730.262*
H10B0.63840.68140.49250.262*
O40.1585 (5)0.75000.56513 (17)0.0986 (16)
C60.0868 (5)0.8539 (6)0.54992 (19)0.121 (2)
H6A0.00390.85750.56830.145*
H6B0.06870.85370.51170.145*
O10.3486 (5)0.75000.77856 (16)0.0929 (15)
C10.4203 (6)0.8546 (6)0.79449 (19)0.127 (2)
H1C0.51340.85720.77780.152*
H1D0.43310.85570.83300.152*
O20.3379 (3)0.9612 (3)0.71993 (14)0.0964 (10)
O30.1868 (3)0.9589 (3)0.62119 (14)0.0938 (10)
C40.2686 (6)1.0561 (5)0.6389 (3)0.121 (2)
H4A0.23041.12720.62400.145*
H4B0.36621.04800.62700.145*
C50.1737 (6)0.9561 (6)0.5645 (2)0.127 (2)
H5A0.12751.02640.55240.153*
H5B0.26620.95110.54750.153*
C30.2649 (6)1.0613 (4)0.6980 (3)0.121 (2)
H3A0.31121.13120.71060.145*
H3B0.16681.06260.71000.145*
C20.3375 (6)0.9578 (6)0.7762 (2)0.129 (2)
H2A0.37831.02840.79060.154*
H2B0.24070.95080.78910.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0715 (5)0.0665 (5)0.0757 (5)0.0000.0136 (4)0.000
Cl10.0628 (12)0.189 (3)0.285 (4)0.0000.0184 (17)0.000
Cl20.0920 (11)0.1220 (14)0.0744 (9)0.0000.0151 (9)0.000
Cl30.256 (2)0.1460 (13)0.1486 (13)0.0826 (14)0.0819 (13)0.0772 (11)
N10.048 (2)0.068 (3)0.053 (2)0.0000.0015 (19)0.000
C80.092 (5)0.148 (8)0.158 (8)0.0000.039 (5)0.000
C90.096 (5)0.128 (7)0.163 (8)0.0000.046 (5)0.000
C70.059 (4)0.239 (11)0.096 (5)0.0000.013 (4)0.000
C100.132 (7)0.300 (16)0.093 (6)0.0000.035 (6)0.000
O40.075 (3)0.156 (4)0.065 (2)0.0000.014 (2)0.000
C60.080 (3)0.208 (6)0.075 (3)0.026 (4)0.004 (2)0.049 (4)
O10.075 (3)0.142 (4)0.061 (2)0.0000.016 (2)0.000
C10.103 (4)0.205 (6)0.072 (3)0.041 (4)0.021 (3)0.037 (4)
O20.095 (2)0.078 (2)0.116 (2)0.0204 (17)0.0195 (18)0.0302 (18)
O30.0780 (19)0.082 (2)0.121 (2)0.0047 (16)0.0201 (17)0.0362 (18)
C40.105 (4)0.067 (3)0.190 (6)0.014 (3)0.047 (4)0.034 (3)
C50.100 (4)0.182 (5)0.100 (3)0.035 (4)0.017 (3)0.083 (4)
C30.094 (3)0.051 (3)0.217 (7)0.011 (3)0.037 (4)0.023 (4)
C20.111 (4)0.148 (5)0.127 (4)0.039 (4)0.001 (3)0.072 (4)
Geometric parameters (Å, º) top
Fe1—Cl32.1528 (18)C6—H6B0.9599
Fe1—Cl3i2.1528 (18)O1—C11.425 (6)
Fe1—Cl12.155 (2)O1—C1ii1.425 (6)
Fe1—Cl22.1723 (18)C1—C21.480 (9)
N1—C71.456 (8)C1—H1C0.9600
N1—H1A0.9000C1—H1D0.9601
N1—H1B0.9001O2—C21.391 (6)
C8—C91.416 (10)O2—C31.437 (6)
C8—C71.419 (10)O3—C51.406 (6)
C8—H8A0.9600O3—C41.416 (7)
C9—C101.392 (12)C4—C31.463 (9)
C9—H9A0.9600C4—H4A0.9601
C7—H7A0.9600C4—H4B0.9600
C10—H10A0.9601C5—H5A0.9600
C10—H10B0.9601C5—H5B0.9600
O4—C6ii1.413 (6)C3—H3A0.9599
O4—C61.413 (6)C3—H3B0.9600
C6—C51.466 (9)C2—H2A0.9601
C6—H6A0.9600C2—H2B0.9601
Cl3—Fe1—Cl3i112.68 (13)C2—C1—H1C108.3
Cl3—Fe1—Cl1108.61 (8)O1—C1—H1D110.1
Cl3i—Fe1—Cl1108.61 (8)C2—C1—H1D110.9
Cl3—Fe1—Cl2108.69 (6)H1C—C1—H1D108.3
Cl3i—Fe1—Cl2108.69 (6)C2—O2—C3113.4 (5)
Cl1—Fe1—Cl2109.52 (12)C5—O3—C4111.9 (4)
C7—N1—H1A110.2O3—C4—C3109.1 (4)
C7—N1—H1B109.1O3—C4—H4A110.3
H1A—N1—H1B109.5C3—C4—H4A109.9
C9—C8—C7123.1 (8)O3—C4—H4B109.8
C9—C8—H8A106.4C3—C4—H4B109.4
C7—C8—H8A106.5H4A—C4—H4B108.3
C10—C9—C8119.0 (9)O3—C5—C6108.2 (4)
C10—C9—H9A107.9O3—C5—H5A109.2
C8—C9—H9A106.9C6—C5—H5A110.0
C8—C7—N1118.4 (6)O3—C5—H5B111.1
C8—C7—H7A106.9C6—C5—H5B109.9
N1—C7—H7A108.3H5A—C5—H5B108.4
C9—C10—H10A111.2O2—C3—C4109.5 (4)
C9—C10—H10B108.6O2—C3—H3A109.2
H10A—C10—H10B109.5C4—C3—H3A110.3
C6ii—O4—C6114.4 (6)O2—C3—H3B110.2
O4—C6—C5110.1 (4)C4—C3—H3B109.3
O4—C6—H6A109.0H3A—C3—H3B108.3
C5—C6—H6A109.6O2—C2—C1109.0 (5)
O4—C6—H6B110.1O2—C2—H2A110.3
C5—C6—H6B109.9C1—C2—H2A110.5
H6A—C6—H6B108.2O2—C2—H2B109.7
C1—O1—C1ii114.1 (6)C1—C2—H2B108.7
O1—C1—C2109.9 (4)H2A—C2—H2B108.5
O1—C1—H1C109.3
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.902.072.963 (5)176
N1—H1B···O30.902.072.966 (4)175

Experimental details

Crystal data
Chemical formula(C4H12N)[FeCl4]·C12H24O6
Mr536.11
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)9.3109 (19), 11.431 (2), 24.718 (5)
V3)2630.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.665, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
24682, 3160, 1649
Rint0.090
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.234, 1.04
No. of reflections3160
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.40

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.902.072.963 (5)176
N1—H1B···O30.902.072.966 (4)175
 

Acknowledgements

The author is grateful to the starter fund of Nanjing College of Chemical Technology.

References

First citationAkutagawa, T., Koshinaka, H., Sato, D., Takeda, S., Noro, S., Takahashi, H., Kumai, R., Tokura, Y. & Nakamura, T. (2009). Nat. Mater. 8, 342–347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds