supplementary materials


yk2081 scheme

Acta Cryst. (2013). E69, m53    [ doi:10.1107/S1600536812050404 ]

Chlorido{[(E)-2-(diphenylphosphanyl)benzylidene](furan-2-ylmethyl)amine-[kappa]P}gold(I)

H. Chiririwa and W. L. Davis

Abstract top

In the title complex, [AuCl(C24H20NOP)], the ligand has N, P and O electron-donating atoms but the AuI atom is coordinated only by the `soft' P atom and an additional Cl atom in an almost linear fashion. Important geometrical parameters include Au-P = 2.2321 (13) Å, Au-Cl = 2.2820 (13) Å and P-Au-Cl = 176.49 (5)°. The furan ring is disordered over two positions in a 0.51 (2):0.49 (2) ratio.

Comment top

There is a growing interest in the co-ordination chemistry of ligands containing both hard (N donor) and soft (P donor) Lewis bases. Such ligands have the potential to bind to soft metal centers such as those of the platinum group metals strongly via phosphorus and weakly via nitrogen, which allows for the displacement of the chelating N-moiety. This is very desirable in homogenous catalytic reactions and the catalytic application of P—N based ligands is being thoroughly investigated by our group.

Among the 'hard' donor type atoms, the co-ordination chemistry of gold(I) shows a distinct paucity in the literature. In this scenario the potentially bidentate ligand is chelated to the metal through only the phosphorus atom (Fig. 1). The gold complex showed a closely linear P— Au—Cl system (bond angle of 176.49°). Another important geometrical parameter includes the C22—N23 = 1.254 (6) Å which is consistent with C=N double bonding. The Au—P bond distance of 2.2321 (13) Å agrees with that reported by Williams et al..

Related literature top

For general background to the title compound, see: Shaw (1999); Barnard et al. (2004); Nomiya et al. (2003). For the synthesis of the starting materials, see: Mogorosi et al. (2011); Uson & Laguna (1986). For similar compounds, see: Chiririwa & Muller (2012); Williams et al. (2007). For their applications, see: Chiririwa et al. (2013).

Experimental top

To a dry CH2Cl2 (10 ml) solution of the precursor [Au(tht)Cl] (tht = tetrahydrothiophene) was added an equimolar amount of N-{(E)-[2-(diphenylphosphanyl)phenyl]methylidene}-2-furan-2-ylethanamine in CH2Cl2 (10 ml), and stirred at room temperature for 2 hrs. The solvent was reduced under reduced pressure and on addition of hexane, the product was filtered off and washed with Et2O (2 X 5 ml)and dried under vacuum for 4 hrs affording a yellow precipitate. Crystals suitable for X-ray structure determination were obtained by recrystallization from a CH2Cl2-hexane mixture at room temperature.

Refinement top

The methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH. A disorder refinement model was applied to the furyl ring in the asymmetric unit. Geometrical (FLAT) restaraints were applied to keep the ring planar.Bond distance (DFIX) and distance similarity restraints (SADI) were applied to obtain reasonable geometries. Ellipsoid displacement (SIMU and DELU) restraints were also applied to the disordered moiety. Free variables were connected to the disordered component to add to unity.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of [Au(C24H20NOP)Cl] showing the atom labelling scheme and displacement ellipsoids drawn at the 40% probability level.
Chlorido{[(E)-2-(diphenylphosphanyl)benzylidene](furan-2- ylmethyl)amine-κP}gold(I) top
Crystal data top
[AuCl(C24H20NOP)]F(000) = 1160
Mr = 601.80Dx = 1.783 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5534 reflections
a = 13.4559 (4) Åθ = 3.6–28.3°
b = 10.3917 (2) ŵ = 6.77 mm1
c = 17.2641 (4) ÅT = 173 K
β = 111.751 (1)°Plate, yellow
V = 2242.16 (9) Å30.16 × 0.11 × 0.02 mm
Z = 4
Data collection top
Bruker APEXII 4K CCD
diffractometer
5536 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 3.1°
0.5° ω scans, 20sh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1313
Tmin = 0.411, Tmax = 0.877l = 2323
74340 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0574P)2]
where P = (Fo2 + 2Fc2)/3
5536 reflections(Δ/σ)max = 0.003
299 parametersΔρmax = 2.27 e Å3
240 restraintsΔρmin = 1.52 e Å3
Crystal data top
[AuCl(C24H20NOP)]V = 2242.16 (9) Å3
Mr = 601.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.4559 (4) ŵ = 6.77 mm1
b = 10.3917 (2) ÅT = 173 K
c = 17.2641 (4) Å0.16 × 0.11 × 0.02 mm
β = 111.751 (1)°
Data collection top
Bruker APEXII 4K CCD
diffractometer
5536 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4175 reflections with I > 2σ(I)
Tmin = 0.411, Tmax = 0.877Rint = 0.100
74340 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100Δρmax = 2.27 e Å3
S = 1.07Δρmin = 1.52 e Å3
5536 reflectionsAbsolute structure: ?
299 parametersFlack parameter: ?
240 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.67118 (12)0.07954 (12)0.82704 (9)0.0504 (3)
Au20.537496 (15)0.068557 (17)0.801052 (11)0.03605 (9)
P30.40775 (10)0.21597 (12)0.76820 (7)0.0330 (3)
C40.3211 (4)0.1963 (5)0.8271 (3)0.0402 (11)
C50.2133 (4)0.2276 (6)0.7948 (4)0.0525 (14)
H50.18130.25700.73890.063*
C60.1517 (6)0.2161 (7)0.8440 (5)0.0707 (19)
H60.07750.23610.82130.085*
C70.1992 (7)0.1753 (6)0.9262 (5)0.075 (2)
H70.15760.16800.96000.090*
C80.3059 (7)0.1456 (6)0.9584 (4)0.0696 (19)
H80.33840.11871.01480.084*
C90.3670 (5)0.1546 (5)0.9092 (3)0.0543 (14)
H90.44060.13200.93180.065*
C100.3191 (4)0.2085 (5)0.6596 (3)0.0342 (10)
C110.2655 (4)0.3144 (5)0.6159 (3)0.0477 (13)
H110.27230.39540.64290.057*
C120.2017 (5)0.3020 (6)0.5326 (4)0.0626 (17)
H120.16440.37500.50260.075*
C130.1913 (5)0.1858 (6)0.4923 (3)0.0588 (16)
H130.14690.17880.43500.071*
C140.2447 (5)0.0805 (6)0.5347 (4)0.0561 (16)
H140.23950.00060.50680.067*
C150.3072 (4)0.0910 (5)0.6195 (3)0.0436 (12)
H150.34180.01690.64990.052*
C160.4594 (4)0.3787 (5)0.7951 (3)0.0326 (10)
C170.4287 (4)0.4506 (4)0.8500 (3)0.0373 (11)
H170.37430.41780.86720.045*
C180.4745 (5)0.5690 (4)0.8810 (4)0.0463 (13)
H180.45170.61570.91870.056*
C190.5530 (5)0.6175 (5)0.8564 (4)0.0522 (14)
H190.58600.69740.87780.063*
C200.5835 (5)0.5500 (5)0.8009 (4)0.0499 (14)
H200.63720.58560.78390.060*
C210.5394 (4)0.4311 (4)0.7681 (3)0.0392 (11)
C220.5774 (4)0.3688 (6)0.7093 (3)0.0458 (12)
H220.63420.40750.69770.055*
N230.5382 (3)0.2656 (4)0.6732 (3)0.0441 (10)
C240.5800 (5)0.2119 (7)0.6128 (4)0.0604 (16)
H24A0.59250.11840.62250.072*
H24B0.64900.25330.61970.072*
C250.5007 (5)0.2348 (6)0.5259 (4)0.0577 (15)
C260.478 (2)0.354 (2)0.5111 (14)0.069 (4)0.51 (2)
H260.50320.42790.54550.082*0.51 (2)
C270.4039 (18)0.344 (2)0.4285 (13)0.077 (4)0.51 (2)
H270.36070.41450.39990.092*0.51 (2)
C280.399 (2)0.235 (2)0.3948 (16)0.075 (5)0.51 (2)
H280.35210.20680.34130.090*0.51 (2)
O290.4960 (14)0.151 (2)0.4681 (13)0.062 (4)0.51 (2)
C28A0.3720 (18)0.3008 (19)0.4016 (13)0.058 (4)0.49 (2)
H28A0.31580.34660.36070.070*0.49 (2)
C27A0.418 (2)0.1871 (19)0.3925 (15)0.066 (4)0.49 (2)
H27A0.41140.14720.34130.079*0.49 (2)
C26A0.466 (3)0.150 (5)0.457 (3)0.070 (5)0.49 (2)
H26A0.48230.06070.46510.084*0.49 (2)
O29A0.4309 (12)0.3359 (15)0.4912 (11)0.072 (4)0.49 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0522 (8)0.0505 (8)0.0493 (8)0.0131 (6)0.0198 (7)0.0090 (6)
Au20.03944 (13)0.03606 (13)0.02786 (12)0.00058 (8)0.00691 (8)0.00152 (8)
P30.0335 (6)0.0360 (7)0.0249 (6)0.0020 (5)0.0057 (5)0.0002 (5)
C40.054 (3)0.036 (3)0.033 (3)0.013 (2)0.019 (2)0.007 (2)
C50.048 (3)0.062 (4)0.053 (3)0.019 (3)0.025 (3)0.016 (3)
C60.074 (4)0.075 (4)0.079 (5)0.032 (4)0.047 (4)0.038 (4)
C70.108 (5)0.067 (4)0.082 (5)0.039 (4)0.073 (5)0.034 (4)
C80.128 (6)0.049 (4)0.048 (4)0.021 (4)0.051 (4)0.010 (3)
C90.081 (4)0.048 (3)0.036 (3)0.009 (3)0.024 (3)0.003 (2)
C100.032 (2)0.039 (3)0.026 (2)0.011 (2)0.0051 (19)0.001 (2)
C110.054 (3)0.044 (3)0.033 (3)0.008 (2)0.002 (2)0.001 (2)
C120.059 (4)0.064 (4)0.044 (3)0.012 (3)0.005 (3)0.011 (3)
C130.054 (3)0.080 (4)0.030 (3)0.021 (3)0.000 (3)0.002 (3)
C140.053 (4)0.066 (4)0.040 (3)0.014 (3)0.007 (3)0.017 (3)
C150.041 (3)0.045 (3)0.040 (3)0.004 (2)0.009 (2)0.007 (2)
C160.030 (2)0.036 (2)0.025 (2)0.000 (2)0.0021 (19)0.002 (2)
C170.033 (3)0.033 (3)0.041 (3)0.0011 (19)0.008 (2)0.002 (2)
C180.052 (3)0.039 (3)0.041 (3)0.004 (2)0.009 (3)0.004 (2)
C190.062 (4)0.036 (3)0.047 (3)0.011 (3)0.007 (3)0.003 (3)
C200.053 (3)0.046 (3)0.043 (3)0.007 (2)0.008 (3)0.002 (2)
C210.039 (3)0.044 (3)0.028 (2)0.004 (2)0.004 (2)0.005 (2)
C220.042 (3)0.056 (3)0.038 (3)0.010 (3)0.014 (2)0.002 (3)
N230.040 (2)0.057 (3)0.036 (2)0.007 (2)0.015 (2)0.003 (2)
C240.067 (4)0.066 (4)0.049 (3)0.013 (3)0.022 (3)0.012 (3)
C250.070 (4)0.062 (4)0.046 (3)0.017 (3)0.027 (3)0.005 (3)
C260.088 (10)0.069 (9)0.044 (8)0.000 (9)0.020 (8)0.002 (7)
C270.091 (9)0.090 (9)0.048 (9)0.006 (8)0.025 (8)0.007 (8)
C280.089 (9)0.080 (10)0.045 (7)0.008 (9)0.012 (7)0.000 (9)
O290.082 (9)0.059 (5)0.038 (7)0.008 (8)0.016 (7)0.011 (5)
C28A0.075 (8)0.061 (9)0.044 (8)0.003 (7)0.026 (6)0.003 (7)
C27A0.092 (9)0.069 (9)0.036 (6)0.011 (8)0.022 (6)0.005 (7)
C26A0.084 (11)0.064 (8)0.044 (8)0.013 (9)0.005 (8)0.004 (7)
O29A0.077 (8)0.076 (7)0.063 (8)0.008 (6)0.026 (7)0.010 (6)
Geometric parameters (Å, º) top
Cl1—Au22.2820 (13)C17—H170.9500
Au2—P32.2321 (13)C18—C191.371 (8)
P3—C101.813 (5)C18—H180.9500
P3—C41.821 (5)C19—C201.368 (8)
P3—C161.822 (5)C19—H190.9500
C4—C51.386 (7)C20—C211.397 (7)
C4—C91.389 (7)C20—H200.9500
C5—C61.394 (8)C21—C221.446 (8)
C5—H50.9500C22—N231.254 (6)
C6—C71.390 (10)C22—H220.9500
C6—H60.9500N23—C241.467 (7)
C7—C81.370 (10)C24—C251.503 (9)
C7—H70.9500C24—H24A0.9900
C8—C91.386 (8)C24—H24B0.9900
C8—H80.9500C25—C261.28 (2)
C9—H90.9500C25—O291.30 (2)
C10—C111.377 (7)C25—O29A1.388 (17)
C10—C151.384 (7)C25—C26A1.41 (4)
C11—C121.381 (7)C26—C271.41 (3)
C11—H110.9500C26—H260.9500
C12—C131.374 (8)C27—C281.27 (3)
C12—H120.9500C27—H270.9500
C13—C141.364 (8)C28—O291.68 (4)
C13—H130.9500C28—H280.9500
C14—C151.396 (7)C28A—C27A1.37 (3)
C14—H140.9500C28A—O29A1.50 (2)
C15—H150.9500C28A—H28A0.9500
C16—C171.385 (7)C27A—C26A1.13 (5)
C16—C211.430 (7)C27A—H27A0.9500
C17—C181.391 (6)C26A—H26A0.9500
P3—Au2—Cl1176.49 (5)C19—C18—H18120.4
C10—P3—C4105.1 (2)C17—C18—H18120.4
C10—P3—C16110.2 (2)C20—C19—C18119.6 (5)
C4—P3—C16103.0 (2)C20—C19—H19120.2
C10—P3—Au2112.74 (17)C18—C19—H19120.2
C4—P3—Au2112.53 (18)C19—C20—C21123.1 (6)
C16—P3—Au2112.55 (15)C19—C20—H20118.5
C5—C4—C9119.1 (5)C21—C20—H20118.5
C5—C4—P3122.7 (4)C20—C21—C16117.5 (5)
C9—C4—P3118.1 (4)C20—C21—C22118.3 (5)
C4—C5—C6120.3 (6)C16—C21—C22124.2 (4)
C4—C5—H5119.8N23—C22—C21122.6 (5)
C6—C5—H5119.8N23—C22—H22118.7
C7—C6—C5119.7 (7)C21—C22—H22118.7
C7—C6—H6120.1C22—N23—C24118.5 (5)
C5—C6—H6120.1N23—C24—C25109.4 (5)
C8—C7—C6120.0 (6)N23—C24—H24A109.8
C8—C7—H7120.0C25—C24—H24A109.8
C6—C7—H7120.0N23—C24—H24B109.8
C7—C8—C9120.4 (6)C25—C24—H24B109.8
C7—C8—H8119.8H24A—C24—H24B108.2
C9—C8—H8119.8C26—C25—O29123.5 (16)
C8—C9—C4120.4 (6)O29—C25—O29A109.9 (13)
C8—C9—H9119.8C26—C25—C26A117 (2)
C4—C9—H9119.8O29A—C25—C26A98.6 (19)
C11—C10—C15119.4 (5)C26—C25—C24112.4 (12)
C11—C10—P3122.9 (4)O29—C25—C24118.2 (11)
C15—C10—P3117.7 (4)O29A—C25—C24131.8 (9)
C10—C11—C12119.6 (5)C26A—C25—C24129.2 (18)
C10—C11—H11120.2C25—C26—C2798.9 (17)
C12—C11—H11120.2C25—C26—H26130.5
C13—C12—C11121.1 (6)C27—C26—H26130.5
C13—C12—H12119.5C28—C27—C26115 (2)
C11—C12—H12119.5C28—C27—H27122.3
C14—C13—C12119.9 (5)C26—C27—H27122.3
C14—C13—H13120.1C27—C28—O29102.9 (19)
C12—C13—H13120.1C27—C28—H28128.6
C13—C14—C15119.6 (5)O29—C28—H28128.6
C13—C14—H14120.2C25—O29—C2892.1 (17)
C15—C14—H14120.2C27A—C28A—O29A103.8 (18)
C10—C15—C14120.4 (5)C27A—C28A—H28A128.1
C10—C15—H15119.8O29A—C28A—H28A128.1
C14—C15—H15119.8C26A—C27A—C28A107 (3)
C17—C16—C21118.0 (4)C26A—C27A—H27A126.3
C17—C16—P3119.5 (4)C28A—C27A—H27A126.3
C21—C16—P3122.2 (4)C27A—C26A—C25120 (4)
C16—C17—C18122.6 (5)C27A—C26A—H26A119.8
C16—C17—H17118.7C25—C26A—H26A119.8
C18—C17—H17118.7C25—O29A—C28A106.0 (13)
C19—C18—C17119.2 (5)
C10—P3—C4—C525.0 (5)C18—C19—C20—C211.0 (9)
C16—P3—C4—C590.5 (5)C19—C20—C21—C160.6 (8)
Au2—P3—C4—C5148.1 (4)C19—C20—C21—C22179.6 (5)
C10—P3—C4—C9158.5 (4)C17—C16—C21—C201.8 (7)
C16—P3—C4—C986.0 (4)P3—C16—C21—C20171.8 (4)
Au2—P3—C4—C935.4 (4)C17—C16—C21—C22178.3 (5)
C9—C4—C5—C60.6 (8)P3—C16—C21—C228.0 (7)
P3—C4—C5—C6177.1 (4)C20—C21—C22—N23175.9 (5)
C4—C5—C6—C71.2 (9)C16—C21—C22—N234.3 (8)
C5—C6—C7—C80.5 (9)C21—C22—N23—C24178.2 (5)
C6—C7—C8—C90.8 (9)C22—N23—C24—C25105.0 (6)
C7—C8—C9—C41.3 (9)N23—C24—C25—C2656.6 (14)
C5—C4—C9—C80.6 (8)N23—C24—C25—O29149.6 (13)
P3—C4—C9—C8176.0 (4)N23—C24—C25—O29A34.5 (12)
C4—P3—C10—C1185.8 (5)N23—C24—C25—C26A136 (2)
C16—P3—C10—C1124.6 (5)O29—C25—C26—C2728 (2)
Au2—P3—C10—C11151.3 (4)O29A—C25—C26—C2738 (3)
C4—P3—C10—C1595.4 (4)C26A—C25—C26—C2712 (3)
C16—P3—C10—C15154.3 (4)C24—C25—C26—C27179.4 (11)
Au2—P3—C10—C1527.6 (4)C25—C26—C27—C2811 (3)
C15—C10—C11—C120.8 (8)C26—C27—C28—O294 (3)
P3—C10—C11—C12178.1 (4)C26—C25—O29—C2829 (2)
C10—C11—C12—C130.3 (9)O29A—C25—O29—C282.8 (17)
C11—C12—C13—C140.2 (10)C26A—C25—O29—C2842 (11)
C12—C13—C14—C151.9 (9)C24—C25—O29—C28179.6 (11)
C11—C10—C15—C142.4 (8)C27—C28—O29—C2517 (2)
P3—C10—C15—C14176.5 (4)O29A—C28A—C27A—C26A15 (3)
C13—C14—C15—C103.0 (9)C28A—C27A—C26A—C2522 (5)
C10—P3—C16—C17112.4 (4)C26—C25—C26A—C27A1 (5)
C4—P3—C16—C170.7 (4)O29—C25—C26A—C27A119 (13)
Au2—P3—C16—C17120.8 (4)O29A—C25—C26A—C27A19 (4)
C10—P3—C16—C2174.0 (4)C24—C25—C26A—C27A168 (3)
C4—P3—C16—C21174.3 (4)C26—C25—O29A—C28A130 (4)
Au2—P3—C16—C2152.8 (4)O29—C25—O29A—C28A4.6 (16)
C21—C16—C17—C181.7 (7)C26A—C25—O29A—C28A6 (2)
P3—C16—C17—C18172.1 (4)C24—C25—O29A—C28A179.3 (9)
C16—C17—C18—C190.2 (8)C27A—C28A—O29A—C253.5 (18)
C17—C18—C19—C201.2 (8)
Acknowledgements top

Mintek and Project AuTEK are acknowledged for funding this project.

references
References top

Barnard, P. J., Baker, M. V., Berners-Price, S. J. & Day, D. A. (2004). J. Inorg. Biochem. 98, 115-119.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chiririwa, H., Moss, J. R., Hendricks, D., Smith, G. S. & Meijboom, R. (2013). Polyhedron, 49, 29–35.

Chiririwa, H. & Muller, A. (2012). Acta Cryst. E68, m49.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Mogorosi, M. M., Mahamo, T., Moss, J. R., Mapolie, S. F., Slootweg, J. C., Lammertsma, K. & Smith, G. S. (2011). J. Organomet. Chem. 696, 3585–3592.

Nomiya, K., Yamamoto, S., Noguchi, R., Yokoyama, H., Kasuga, N. C., Ohyama, K. & Kato, C. (2003). J. Inorg. Biochem. 95, 2208–220.

Shaw, C. F. III (1999). Chem. Rev. 99, 2589–2600.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Uson, R. & Laguna, A. (1986). Organometallic Synthesis, Vol. 3, edited by R. B. Lang & J. J. Eish, pp. 324–327. Amsterdam: Elsevier.

Williams, D. B. G., Traut, T., Kriel, F. H. & van Zyl, W. E. (2007). Inorg. Chem. Commun. 10, 538–542.