[Journal logo]

Volume 69 
Part 1 
Pages m24-m25  
January 2013  

Received 14 November 2012
Accepted 1 December 2012
Online 8 December 2012

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.006 Å
R = 0.037
wR = 0.103
Data-to-parameter ratio = 12.4
Details
Open access

Aqua{2-(pyridin-2-yl)-N-[(pyridin-2-yl)methylidene]ethanamine-[kappa]3N,N',N''}(sulfato-[kappa]2O,O')copper(II) tetrahydrate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania
Correspondence e-mail: mlgayeastou@yahoo.fr

The title complex, [Cu(SO4)(C13H13N3)(H2O)]·4H2O, was obtained by mixing copper sulfate pentahydrate and 2-(pyridin-2-yl)-N-(pyridin-2-ylmethylidene)ethanamine in ethanol under reflux conditions. The CuII ion shows a Jahn-Teller-distorted octahedral geometry, with equatorial positions occupied by three N atoms from the tridentate ligand (average Cu-N = 2.004 Å) and one O atom from a bidentate sulfate anion [Cu-O = 1.963 (2) Å]. The axial positions are occupied by one O atom from a coordinating water molecule [Cu-O = 2.230 (3) Å] and one weakly bonded O atom [Cu-O = 2.750 (2) Å] from the bidentate sulfate ion. The complex molecules are connected through O-H...O hydrogen bonds between the coordinating water molecules and sulfate ions from neighboring complexes, forming a double chain parallel to the c axis. The chains are stabilized through additional hydrogen bonds by one of the non-coordinating water molecules bridging between neighboring strands of the double chains. The remaining three water molecules fill the interstitial space between the double chains and are involved in an intricate hydrogen-bonding network that consolidates the structure.

Related literature

For related structures: see: de Bettencourt-Dias et al. (2010[Bettencourt-Dias, A. de, Scott, V. J. & Hugdal, S. (2010). Inorg. Chim. Acta, 363, 4088-4095.]); Liu et al. (2010[Liu, K., Zhu, X., Wang, J., Li, B. & Zhang, Y. (2010). Inorg. Chem. Commun. 13, 976-980.]). For the Jahn-Teller effect, see: Jahn & Teller (1937[Jahn, H. A. & Teller, E. (1937). Proc. R. Soc. London Ser. A, 161, 220-235.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C13H13N3)(H2O)]·4H2O

  • Mr = 460.94

  • Monoclinic, P 21 /c

  • a = 10.7315 (17) Å

  • b = 23.605 (4) Å

  • c = 7.6478 (12) Å

  • [beta] = 96.523 (3)°

  • V = 1924.8 (5) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 1.29 mm-1

  • T = 293 K

  • 0.10 × 0.07 × 0.05 mm

Data collection
  • Enraf-Nonius CAD-4 diffractometer

  • 14560 measured reflections

  • 3403 independent reflections

  • 2620 reflections with I > 2[sigma](I)

  • Rint = 0.039

  • 2 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2[sigma](F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.04

  • 3403 reflections

  • 274 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.57 e Å-3

  • [Delta][rho]min = -0.39 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O5W-H5WA...O2i 0.80 (2) 1.97 (2) 2.765 (4) 172 (5)
O5W-H5WB...O1ii 0.79 (2) 2.04 (2) 2.803 (3) 162 (5)
O6W-H6WA...O8W 0.84 (2) 2.08 (2) 2.854 (9) 152 (5)
O6W-H6WB...O3 0.82 (2) 2.01 (2) 2.814 (5) 167 (8)
O7W-H7WA...O2iii 0.81 (2) 2.05 (2) 2.859 (5) 175 (6)
O7W-H7WB...O4 0.82 (2) 1.99 (2) 2.802 (5) 174 (7)
O8W-H8WA...O9W 0.83 (2) 2.11 (2) 2.890 (10) 156 (6)
O9W-H9WA...O7Wiv 0.84 (2) 1.91 (2) 2.705 (6) 158 (6)
O9W-H9WB...O6Wi 0.84 (2) 2.33 (2) 3.148 (8) 164 (7)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2518 ).


References

Bettencourt-Dias, A. de, Scott, V. J. & Hugdal, S. (2010). Inorg. Chim. Acta, 363, 4088-4095.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [ISI] [CrossRef] [ChemPort] [details]
Jahn, H. A. & Teller, E. (1937). Proc. R. Soc. London Ser. A, 161, 220-235.  [ChemPort]
Liu, K., Zhu, X., Wang, J., Li, B. & Zhang, Y. (2010). Inorg. Chem. Commun. 13, 976-980.  [ISI] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]


Acta Cryst (2013). E69, m24-m25   [ doi:10.1107/S1600536812049380 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.