organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E,5E)-3,5-Bis(2-chloro­benzyl­­idene)-1-propyl­piperidin-4-one

aSchool of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China
*Correspondence e-mail: wjzwzmc@126.com

(Received 7 November 2012; accepted 30 November 2012; online 8 December 2012)

The title compound, C22H21Cl2NO, is a derivative of mono-carbonyl analogues of curcumin (MACs). The mol­ecule has an E conformation for each of the olefinic bonds. The 1-propyl­piperidin-4-one ring has a distorted chair conformation with the ring N and the C and O atoms of the carbonyl group deviating from the mean plane of the remaining four ring C atoms by 0.682 (2), −0.134 (3) and −0.340 (4) Å, respectively. The dihedral angle between the benzene rings is 26.5 (1)°. In the crystal, mol­ecules are connected by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For related structures, see: Agrawal & Mishra (2010[Agrawal, D. K. & Mishra, P. K. (2010). Med. Res. Rev. 30, 818-860.]); Liang et al. (2008[Liang, G., Yang, S. L., Shao, L. L., Zhao, C. G., Xiao, J., Lv, Y. X., Yang, J., Zhao, Y. & Li, X. K. (2008). J. Asian Nat. Prod. Res. 10, 957-965.], 2009[Liang, G., Yang, S., Zhou, H., Shao, L., Huang, K., Xiao, J., Huang, Z. & Li, X. (2009). Eur. J. Med. Chem. 44, 915-919.]); Wu et al. (2010[Wu, J., Wang, C., Cai, Y., Yang, S., Zheng, X., Qiu, P., Peng, J., Wu, X., Liang, G. & Li, X. (2010). Chin. J. Org. Chem. 30, 884-889.], 2011[Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110-8123.]); Zhao et al. (2010[Zhao, C., Cai, Y., He, X., Li, J., Zhang, L., Wu, J., Zhao, Y., Yang, S., Li, X., Li, W. & Liang, G. (2010). Eur. J. Med. Chem. 45, 5773-5780.], 2012[Zhao, C., Liu, Z. & Liang, G. (2012). Curr. Pharm. Des. In the press.]). For background to and applications of chalcones, see: Agrawal & Mishra (2010[Agrawal, D. K. & Mishra, P. K. (2010). Med. Res. Rev. 30, 818-860.]); Wu et al. (2010[Wu, J., Wang, C., Cai, Y., Yang, S., Zheng, X., Qiu, P., Peng, J., Wu, X., Liang, G. & Li, X. (2010). Chin. J. Org. Chem. 30, 884-889.], 2011[Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110-8123.]); Zhao et al. (2012[Zhao, C., Liu, Z. & Liang, G. (2012). Curr. Pharm. Des. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21Cl2NO

  • Mr = 386.30

  • Orthorhombic, P c a 21

  • a = 18.0123 (15) Å

  • b = 7.0128 (6) Å

  • c = 15.4364 (13) Å

  • V = 1949.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.29 × 0.21 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.759, Tmax = 1.000

  • 11133 measured reflections

  • 3807 independent reflections

  • 3508 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.04

  • 3807 reflections

  • 236 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1812 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯O1i 0.97 2.64 3.607 (3) 174
C8—H8⋯Cg1ii 0.93 2.89 3.568 131
C21—H21BCg1iii 0.97 3.01 3.613 121
Symmetry codes: (i) x, y+1, z; (ii) [x+{\script{1\over 2}}, -y, z]; (iii) [-x+1, -y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Curcumin is a natural drug isolated from turmeric. Curcumin possesses extensive biological activity such as anti-inflammatory, antioxidant, antitumor (Agrawal & Mishra, 2010; Zhao et al., 2012). However, its β-diketone moiety causes instability and poor bioavailability in body. Structural modification to prepare the analogues without the β-diketone moiety leads to mono-carbonyl analogues of curcumin (MACs) which are more stable and possess good pharmacokinetic profiles (Zhao et al., 2012). We synthesized a series of MACs in order to study antitumor and anti-inflammatory activities. In previous researches of our group, we reported the crystal structures of series of 5-carbon-linker mono-carbonyl analogues as following: 1,5-diaryl-1,4-pentadiene-3-ones, 2,6-(diarylidene)cyclohexanone, 2,5-(diarylidene)cyclopentanone (Liang et al., 2008, 2009; Wu et al., 2010, 2011; Zhao et al., 2010, 2012).

In this paper, we present the crystal structure of the title curcumin derivative, C22H21Cl2NO. The molecule has an E conformation for each of the olefinic bonds (Fig. 1). The 1-propylpiperidin-4-one ring has a distorted chair conformation: atoms N1, C1 and O1 deviate from the mean plane (C2-C3-C4-C5) by +0.682 (2), -0.134 (3) and -0.340 (4) Å, respectively. The dihedral angle between the phenyl rings C7-C12 and C14-C19 is 26.5 (1)°. In the crystal, molecules are connected by weak C—H···O and C–H···π interactions (Table 1).

Related literature top

For related structures, see: Agrawal & Mishra (2010); Liang et al. (2008, 2009); Wu et al. (2010, 2011); Zhao et al. (2010, 2012). For background to and applications of chalcones, see: Agrawal & Mishra (2010); Wu et al. (2010, 2011); Zhao et al. (2012).

Experimental top

The title compound was synthesized by aldol condensation between 1-propylpiperidin-4-one and 2-fluorobenzaldehyde. 1-Propylpiperidin-4-one (1 mmol) and 2-fluorobenzaldehyde (2.1 mmol) were dissolved in absolute ethyl alcohol (20 ml). When the temperature of solution was at 288 K by using ice-water bath, 5 drops of NaOH (40%) were added and the reaction solution became yellow. The reaction was monitored by thin-layer chromatography. After the reaction was over, 20 ml H2O was added and the yellow solid was separated out. Precipitation was filtered and washed with mixture of cold ethanol and water (1:10). The production was purified by silica gel column chromatograph, elution solvent was the mixture of petroleum ether and ethyl acetate (4:1). The yield of production is 76.6%, and the melting point is in the range 397.35 – 401.05 K. The pure product was crystallized in the solution mixture of CH2Cl2 and CH3CH2OH.

Refinement top

All H atoms were positioned geometrically and refined using a riding model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for the aromatic H atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for the methylene H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl H atoms.

Structure description top

Curcumin is a natural drug isolated from turmeric. Curcumin possesses extensive biological activity such as anti-inflammatory, antioxidant, antitumor (Agrawal & Mishra, 2010; Zhao et al., 2012). However, its β-diketone moiety causes instability and poor bioavailability in body. Structural modification to prepare the analogues without the β-diketone moiety leads to mono-carbonyl analogues of curcumin (MACs) which are more stable and possess good pharmacokinetic profiles (Zhao et al., 2012). We synthesized a series of MACs in order to study antitumor and anti-inflammatory activities. In previous researches of our group, we reported the crystal structures of series of 5-carbon-linker mono-carbonyl analogues as following: 1,5-diaryl-1,4-pentadiene-3-ones, 2,6-(diarylidene)cyclohexanone, 2,5-(diarylidene)cyclopentanone (Liang et al., 2008, 2009; Wu et al., 2010, 2011; Zhao et al., 2010, 2012).

In this paper, we present the crystal structure of the title curcumin derivative, C22H21Cl2NO. The molecule has an E conformation for each of the olefinic bonds (Fig. 1). The 1-propylpiperidin-4-one ring has a distorted chair conformation: atoms N1, C1 and O1 deviate from the mean plane (C2-C3-C4-C5) by +0.682 (2), -0.134 (3) and -0.340 (4) Å, respectively. The dihedral angle between the phenyl rings C7-C12 and C14-C19 is 26.5 (1)°. In the crystal, molecules are connected by weak C—H···O and C–H···π interactions (Table 1).

For related structures, see: Agrawal & Mishra (2010); Liang et al. (2008, 2009); Wu et al. (2010, 2011); Zhao et al. (2010, 2012). For background to and applications of chalcones, see: Agrawal & Mishra (2010); Wu et al. (2010, 2011); Zhao et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids (H atoms omitted for clarity).
[Figure 2] Fig. 2. Packing diagram of the title compound along the b axis.
(3E,5E)-3,5-Bis(2-chlorobenzylidene)-1-propylpiperidin-4-one top
Crystal data top
C22H21Cl2NOF(000) = 808
Mr = 386.30Dx = 1.316 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4766 reflections
a = 18.0123 (15) Åθ = 5.2–54.3°
b = 7.0128 (6) ŵ = 0.34 mm1
c = 15.4364 (13) ÅT = 293 K
V = 1949.9 (3) Å3Prismatic, green
Z = 40.29 × 0.21 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3807 independent reflections
Radiation source: fine-focus sealed tube3508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2122
Tmin = 0.759, Tmax = 1.000k = 68
11133 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.0691P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3807 reflectionsΔρmax = 0.22 e Å3
236 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983), 1812 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C22H21Cl2NOV = 1949.9 (3) Å3
Mr = 386.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.0123 (15) ŵ = 0.34 mm1
b = 7.0128 (6) ÅT = 293 K
c = 15.4364 (13) Å0.29 × 0.21 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3807 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3508 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 1.000Rint = 0.031
11133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.14 e Å3
3807 reflectionsAbsolute structure: Flack (1983), 1812 Friedel pairs
236 parametersAbsolute structure parameter: 0.01 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.78182 (4)0.45470 (9)0.63636 (5)0.0796 (2)
Cl20.37574 (3)0.55096 (7)0.88228 (4)0.06296 (16)
N10.56671 (8)0.1169 (2)0.77359 (10)0.0401 (3)
O10.63228 (8)0.3652 (2)0.89850 (10)0.0607 (4)
C10.61494 (10)0.2139 (3)0.86622 (12)0.0429 (4)
C20.53972 (9)0.1287 (2)0.88170 (12)0.0403 (4)
C30.52682 (10)0.0724 (3)0.85301 (11)0.0437 (4)
H3A0.47410.09200.84380.052*
H3B0.54270.15880.89840.052*
C40.64621 (10)0.0972 (3)0.78692 (14)0.0474 (4)
H4A0.66190.18170.83320.057*
H4B0.67220.13430.73450.057*
C50.66643 (9)0.1048 (3)0.80985 (12)0.0423 (4)
C60.72557 (10)0.1989 (3)0.78005 (13)0.0449 (4)
H60.72820.32740.79450.054*
C70.78713 (10)0.1247 (3)0.72710 (11)0.0426 (4)
C80.81962 (12)0.0505 (3)0.74401 (14)0.0541 (5)
H80.79980.12740.78730.065*
C90.88044 (12)0.1138 (4)0.69847 (16)0.0621 (6)
H90.90130.23170.71140.075*
C100.91043 (12)0.0031 (4)0.63378 (17)0.0639 (6)
H100.95160.04580.60310.077*
C110.87924 (12)0.1711 (4)0.61467 (15)0.0585 (5)
H110.89870.24610.57050.070*
C120.81917 (11)0.2330 (3)0.66148 (12)0.0477 (4)
C130.48853 (10)0.2435 (3)0.91708 (11)0.0416 (4)
H130.50360.36810.92780.050*
C140.41197 (10)0.1981 (3)0.94103 (11)0.0407 (4)
C150.39186 (13)0.0247 (3)0.97859 (13)0.0533 (5)
H150.42750.06990.98570.064*
C160.31982 (14)0.0090 (4)1.00541 (16)0.0658 (6)
H160.30740.12541.03030.079*
C170.26585 (13)0.1308 (4)0.99520 (16)0.0650 (6)
H170.21740.10811.01340.078*
C180.28397 (11)0.3015 (3)0.95846 (14)0.0548 (5)
H180.24810.39560.95160.066*
C190.35581 (10)0.3336 (3)0.93162 (12)0.0443 (4)
C200.54687 (11)0.3110 (3)0.74676 (12)0.0460 (4)
H20A0.56600.40010.78930.055*
H20B0.49320.32240.74650.055*
C210.57591 (14)0.3668 (3)0.65862 (15)0.0645 (6)
H21A0.62970.37090.66030.077*
H21B0.56140.27090.61660.077*
C220.54679 (16)0.5583 (3)0.63016 (19)0.0746 (7)
H22A0.49370.55250.62490.112*
H22B0.56810.59120.57510.112*
H22C0.56000.65310.67230.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0878 (4)0.0597 (4)0.0914 (4)0.0037 (3)0.0140 (4)0.0267 (3)
Cl20.0552 (3)0.0512 (3)0.0825 (4)0.0052 (2)0.0007 (3)0.0101 (3)
N10.0345 (7)0.0385 (7)0.0474 (7)0.0002 (6)0.0026 (6)0.0018 (6)
O10.0486 (8)0.0557 (8)0.0777 (10)0.0103 (6)0.0083 (7)0.0159 (8)
C10.0367 (9)0.0427 (9)0.0494 (10)0.0020 (7)0.0036 (7)0.0021 (8)
C20.0364 (8)0.0445 (9)0.0399 (8)0.0012 (7)0.0007 (7)0.0042 (8)
C30.0384 (9)0.0438 (9)0.0489 (10)0.0014 (7)0.0073 (7)0.0042 (7)
C40.0351 (9)0.0475 (10)0.0596 (11)0.0032 (8)0.0020 (8)0.0013 (9)
C50.0311 (9)0.0487 (10)0.0472 (9)0.0006 (7)0.0034 (7)0.0050 (8)
C60.0365 (9)0.0485 (10)0.0496 (9)0.0005 (7)0.0017 (8)0.0029 (8)
C70.0339 (9)0.0489 (10)0.0451 (9)0.0068 (7)0.0036 (7)0.0020 (8)
C80.0389 (11)0.0635 (13)0.0600 (12)0.0005 (9)0.0006 (9)0.0133 (10)
C90.0427 (11)0.0660 (13)0.0776 (15)0.0089 (10)0.0006 (10)0.0011 (12)
C100.0419 (11)0.0811 (15)0.0688 (13)0.0005 (10)0.0107 (10)0.0121 (12)
C110.0520 (12)0.0744 (15)0.0490 (10)0.0166 (10)0.0083 (9)0.0003 (10)
C120.0417 (10)0.0518 (11)0.0495 (10)0.0078 (8)0.0044 (8)0.0035 (8)
C130.0389 (9)0.0433 (9)0.0425 (9)0.0027 (7)0.0016 (7)0.0009 (7)
C140.0400 (9)0.0430 (9)0.0391 (8)0.0054 (7)0.0028 (7)0.0062 (7)
C150.0591 (12)0.0473 (11)0.0535 (11)0.0017 (9)0.0146 (10)0.0030 (9)
C160.0690 (15)0.0582 (12)0.0703 (14)0.0132 (11)0.0272 (12)0.0026 (11)
C170.0487 (12)0.0756 (15)0.0708 (14)0.0113 (11)0.0225 (11)0.0160 (12)
C180.0394 (10)0.0651 (13)0.0598 (11)0.0013 (9)0.0070 (8)0.0163 (10)
C190.0431 (9)0.0449 (10)0.0450 (9)0.0029 (8)0.0027 (8)0.0097 (8)
C200.0436 (10)0.0434 (10)0.0508 (10)0.0028 (8)0.0052 (8)0.0024 (8)
C210.0701 (15)0.0563 (13)0.0671 (13)0.0111 (10)0.0247 (12)0.0092 (10)
C220.0879 (18)0.0614 (14)0.0746 (15)0.0123 (11)0.0157 (14)0.0184 (12)
Geometric parameters (Å, º) top
Cl1—C121.738 (2)C10—H100.9300
Cl2—C191.741 (2)C11—C121.372 (3)
N1—C41.453 (2)C11—H110.9300
N1—C31.455 (2)C13—C141.463 (2)
N1—C201.466 (2)C13—H130.9300
O1—C11.213 (2)C14—C151.395 (3)
C1—C51.484 (3)C14—C191.396 (3)
C1—C21.500 (2)C15—C161.382 (3)
C2—C131.340 (2)C15—H150.9300
C2—C31.497 (3)C16—C171.390 (4)
C3—H3A0.9700C16—H160.9300
C3—H3B0.9700C17—C181.364 (3)
C4—C51.505 (3)C17—H170.9300
C4—H4A0.9700C18—C191.377 (3)
C4—H4B0.9700C18—H180.9300
C5—C61.335 (3)C20—C211.509 (3)
C6—C71.472 (3)C20—H20A0.9700
C6—H60.9300C20—H20B0.9700
C7—C81.386 (3)C21—C221.507 (3)
C7—C121.391 (3)C21—H21A0.9700
C8—C91.375 (3)C21—H21B0.9700
C8—H80.9300C22—H22A0.9600
C9—C101.376 (4)C22—H22B0.9600
C9—H90.9300C22—H22C0.9600
C10—C111.377 (3)
C4—N1—C3110.30 (15)C11—C12—C7122.6 (2)
C4—N1—C20111.63 (14)C11—C12—Cl1118.09 (16)
C3—N1—C20108.46 (14)C7—C12—Cl1119.35 (16)
O1—C1—C5122.06 (16)C2—C13—C14128.35 (17)
O1—C1—C2121.03 (17)C2—C13—H13115.8
C5—C1—C2116.91 (15)C14—C13—H13115.8
C13—C2—C3125.45 (16)C15—C14—C19116.66 (17)
C13—C2—C1116.55 (15)C15—C14—C13122.67 (18)
C3—C2—C1117.94 (15)C19—C14—C13120.57 (17)
N1—C3—C2112.02 (14)C16—C15—C14121.1 (2)
N1—C3—H3A109.2C16—C15—H15119.4
C2—C3—H3A109.2C14—C15—H15119.4
N1—C3—H3B109.2C15—C16—C17120.2 (2)
C2—C3—H3B109.2C15—C16—H16119.9
H3A—C3—H3B107.9C17—C16—H16119.9
N1—C4—C5111.19 (15)C18—C17—C16119.9 (2)
N1—C4—H4A109.4C18—C17—H17120.0
C5—C4—H4A109.4C16—C17—H17120.0
N1—C4—H4B109.4C17—C18—C19119.6 (2)
C5—C4—H4B109.4C17—C18—H18120.2
H4A—C4—H4B108.0C19—C18—H18120.2
C6—C5—C1116.51 (18)C18—C19—C14122.58 (18)
C6—C5—C4125.24 (17)C18—C19—Cl2117.92 (16)
C1—C5—C4118.16 (15)C14—C19—Cl2119.49 (14)
C5—C6—C7128.18 (18)N1—C20—C21114.26 (16)
C5—C6—H6115.9N1—C20—H20A108.7
C7—C6—H6115.9C21—C20—H20A108.7
C8—C7—C12116.48 (18)N1—C20—H20B108.7
C8—C7—C6121.77 (17)C21—C20—H20B108.7
C12—C7—C6121.59 (18)H20A—C20—H20B107.6
C9—C8—C7121.8 (2)C22—C21—C20111.92 (18)
C9—C8—H8119.1C22—C21—H21A109.2
C7—C8—H8119.1C20—C21—H21A109.2
C8—C9—C10120.1 (2)C22—C21—H21B109.2
C8—C9—H9119.9C20—C21—H21B109.2
C10—C9—H9119.9H21A—C21—H21B107.9
C9—C10—C11119.8 (2)C21—C22—H22A109.5
C9—C10—H10120.1C21—C22—H22B109.5
C11—C10—H10120.1H22A—C22—H22B109.5
C12—C11—C10119.3 (2)C21—C22—H22C109.5
C12—C11—H11120.3H22A—C22—H22C109.5
C10—C11—H11120.3H22B—C22—H22C109.5
O1—C1—C2—C1313.3 (3)C10—C11—C12—C71.3 (3)
C5—C1—C2—C13166.64 (16)C10—C11—C12—Cl1179.34 (18)
O1—C1—C2—C3169.50 (17)C8—C7—C12—C110.7 (3)
C5—C1—C2—C310.6 (2)C6—C7—C12—C11176.22 (19)
C4—N1—C3—C261.51 (19)C8—C7—C12—Cl1179.91 (15)
C20—N1—C3—C2175.95 (15)C6—C7—C12—Cl14.4 (2)
C13—C2—C3—N1141.92 (17)C3—C2—C13—C144.6 (3)
C1—C2—C3—N135.0 (2)C1—C2—C13—C14178.42 (17)
C3—N1—C4—C562.3 (2)C2—C13—C14—C1539.3 (3)
C20—N1—C4—C5177.01 (15)C2—C13—C14—C19144.50 (18)
O1—C1—C5—C614.9 (3)C19—C14—C15—C160.4 (3)
C2—C1—C5—C6164.98 (16)C13—C14—C15—C16175.87 (19)
O1—C1—C5—C4168.33 (18)C14—C15—C16—C170.0 (3)
C2—C1—C5—C411.8 (2)C15—C16—C17—C180.1 (4)
N1—C4—C5—C6139.18 (19)C16—C17—C18—C190.1 (3)
N1—C4—C5—C137.3 (2)C17—C18—C19—C140.5 (3)
C1—C5—C6—C7176.63 (18)C17—C18—C19—Cl2178.21 (17)
C4—C5—C6—C76.9 (3)C15—C14—C19—C180.7 (3)
C5—C6—C7—C842.7 (3)C13—C14—C19—C18175.70 (17)
C5—C6—C7—C12142.0 (2)C15—C14—C19—Cl2178.04 (14)
C12—C7—C8—C90.2 (3)C13—C14—C19—Cl25.6 (2)
C6—C7—C8—C9175.4 (2)C4—N1—C20—C2166.3 (2)
C7—C8—C9—C100.4 (4)C3—N1—C20—C21171.97 (18)
C8—C9—C10—C110.1 (4)N1—C20—C21—C22173.6 (2)
C9—C10—C11—C121.0 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20A···O1i0.972.643.607 (3)174
C8—H8···Cg1ii0.932.893.568131
C21—H21B···Cg1iii0.973.013.613121
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z; (iii) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC22H21Cl2NO
Mr386.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)18.0123 (15), 7.0128 (6), 15.4364 (13)
V3)1949.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.29 × 0.21 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.759, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11133, 3807, 3508
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.04
No. of reflections3807
No. of parameters236
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.14
Absolute structureFlack (1983), 1812 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20A···O1i0.972.643.607 (3)173.8
C8—H8···Cg1ii0.932.893.568131
C21—H21B···Cg1iii0.973.013.613121
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y, z; (iii) x+1, y, z1/2.
 

Acknowledgements

This study was partially supported by the Technology Foundation for Medical Science of Zhejiang Province (grant No. 2012KYA129) and University Students in Zhejiang Science and Technology Innovation Projects (grant No. 2012R413020). The authors are grateful to the associate researcher Sun Jie from Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, for testing and crystal analysis.

References

First citationAgrawal, D. K. & Mishra, P. K. (2010). Med. Res. Rev. 30, 818–860.  Web of Science CAS PubMed Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiang, G., Yang, S. L., Shao, L. L., Zhao, C. G., Xiao, J., Lv, Y. X., Yang, J., Zhao, Y. & Li, X. K. (2008). J. Asian Nat. Prod. Res. 10, 957–965.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, G., Yang, S., Zhou, H., Shao, L., Huang, K., Xiao, J., Huang, Z. & Li, X. (2009). Eur. J. Med. Chem. 44, 915–919.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X. & Liang, G. (2011). J. Med. Chem. 54, 8110–8123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWu, J., Wang, C., Cai, Y., Yang, S., Zheng, X., Qiu, P., Peng, J., Wu, X., Liang, G. & Li, X. (2010). Chin. J. Org. Chem. 30, 884–889.  Google Scholar
First citationZhao, C., Cai, Y., He, X., Li, J., Zhang, L., Wu, J., Zhao, Y., Yang, S., Li, X., Li, W. & Liang, G. (2010). Eur. J. Med. Chem. 45, 5773–5780.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, C., Liu, Z. & Liang, G. (2012). Curr. Pharm. Des. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds