organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-4-fluoro­anilinium picrate

aP. A. College of Engineering, Department of Chemistry, Nadupadavu, Mangalore 574 153, India, bMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, cUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and dNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 3 November 2012; accepted 8 January 2013; online 16 January 2013)

In the title picrate salt of a dihalogenated aniline derivative, C6H6ClF+·C6H2N3O7, the intra­cyclic C—C—C angles in the picrate anion cover a broad range [111.95 (12)–125.38 (13)°], while those in the aromatic cation span a much narrower range [118.25 (14)–122.33 (13)°]. In the crystal, classical N—H⋯O hydrogen bonds, as well as C—H⋯O contacts, connect the ions into layers parallel to (001).

Related literature

For related structures, see: Jin et al. (2011[Jin, S.-W., Chen, B.-X., Ge, Y.-S., Yin, H.-B. & Fang, Y.-P. (2011). Acta Cryst. E67, o1694.]); Wang (2011[Wang, W.-Q. (2011). Acta Cryst. E67, o860.]); Betz et al. (2011[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o2587-o2588.]); Dutkiewicz et al. (2011[Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o235.]); Jasinski et al. (2010a[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010a). Acta Cryst. E66, o1187-o1188.],b[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010b). Acta Cryst. E66, o1189-o1190.], 2011[Jasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o637-o638.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6ClF+·C6H2N3O7

  • Mr = 374.67

  • Triclinic, [P \overline 1]

  • a = 4.4054 (2) Å

  • b = 11.9881 (5) Å

  • c = 13.7010 (5) Å

  • α = 90.057 (1)°

  • β = 91.803 (1)°

  • γ = 97.743 (1)°

  • V = 716.62 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.53 × 0.32 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 1.000

  • 12360 measured reflections

  • 3525 independent reflections

  • 2947 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.06

  • 3525 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯O1i 0.91 (2) 1.85 (2) 2.7324 (17) 165 (2)
N4—H42⋯O12ii 0.89 (2) 2.40 (2) 3.0599 (18) 131.2 (16)
N4—H42⋯O11ii 0.89 (2) 2.60 (2) 3.3425 (17) 141.8 (16)
N4—H43⋯O1 0.96 (2) 1.81 (2) 2.7579 (16) 172.7 (18)
C13—H13⋯O21iii 0.95 2.47 3.3152 (19) 148
C26—H26⋯O32 0.95 2.49 3.378 (2) 156
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,4,6-Trinitrophenol (picric acid) was and is primarily used to manufacture explosives. I has also found widespread use as an intermediate in the production of dyes. As a strong organic acid, picric acid forms salts with a large variety of N-containing organic bases. The crystal structures of some picrates have been reported (Jin et al., 2011; Wang, 2011; Betz et al., 2011; Dutkiewicz et al., 2011; Jasinski et al., 2011; Jasinski et al., 2010a; Jasinski et al., 2010b). In continuation of our studies of structural aspects of simple organic salts of amine bases, the title compound was synthesized.

Intracyclic C–C–C angles in the picrate anion markedly deviate from the ideal value by covering a range of 111.95 (12)–125.38 (13) ° where the smallest angle is found on the carbon atome bearing the deprotonated hydroxy group and the largest angle on one of the carbon atoms in ortho position to the former one. The cationic part demonstrates a relatively smaller distortion of its aromatic system in terms of intracyclic C–C–C angles, the latter ones found in between 118.25 (14) ° and 122.33 (13) °. The smallest angle in the cation appears on the unsubstituted carbon atom in between the protonated amine group and the chloro substituent while the largest angle is present on the carbon atom bearing the protonated amine group. The tilting of the nitro groups of the picrate anion with respect to the aromatic system they are bonded to varies significantly, the respective O–N–C–C dihedral angles being 13.5 (2) °, -25.4 (2) ° and 42.61 (19) °. The least-squares planes defined by the individual carbon atoms of both aromatic systems subtend an angle of 16.92 (7) ° (Fig. 1).

In the crystal, classical hydrogen bonds of the N–H···O type are observed, as well as C–H···O contacts whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the participating. atoms. The latter contacts are supported by carbon-bound hydrogen atoms on the cation as well as the anion and invariably have oxygen atoms on nitro groups as acceptors. Two of the nitrogen-bonded hydrogen atoms form hydrogen bonds to the oxygen atom of the deprotonated hydroxyl group while the third nitrogen-bonded hydrogen atom forms a hydrogen bond to a nitro group. The latter hydrogen bond shows bifurcation. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the N–H···O type hydrogen bonds connect the entities of the crystal structure to columnar arrays along the crystallographic a axis that are further connected to layers parallel ab by the C–H···O contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···O contacts is DR22(10) on the unary level while the classical hydrogen bonds necessitate a DDDDD descriptor on the same level (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Related literature top

For related structures, see: Jin et al. (2011); Wang (2011); Betz et al. (2011); Dutkiewicz et al. (2011); Jasinski et al. (2010a,b, 2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

3-Chloro-4-fluoroaniline (1.45 g, 0.01 mol) and picric acid (2.29 g, 0.01 mol) were individually dissolved in water (60 mL). The solutions were mixed and HCl (5 M, 2 mL) was added under stirring in a few minutes. The product formed was filtered and dried. Yellow crystals of the title compound were obtained by slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). All nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed along [-1 0 0]. For reasons of clarity, only a selection of intermolecular contacts is shown. Blue dashed lines depict classical hydrogen bonds of the N–H···O type, green dashed lines depict C–H···O contacts. Symmetry operator: i -x + 1, -y + 2, -z.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
3-Chloro-4-fluoroanilinium 2,4,6-trinitrophenolate top
Crystal data top
C6H6ClF+·C6H2N3O7Z = 2
Mr = 374.67F(000) = 380
Triclinic, P1Dx = 1.736 Mg m3
Hall symbol: -P 1Melting point: 438 K
a = 4.4054 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9881 (5) ÅCell parameters from 8065 reflections
c = 13.7010 (5) Åθ = 2.3–28.3°
α = 90.057 (1)°µ = 0.33 mm1
β = 91.803 (1)°T = 200 K
γ = 97.743 (1)°Needle, yellow
V = 716.62 (5) Å30.53 × 0.32 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
3525 independent reflections
Radiation source: fine-focus sealed tube2947 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 55
Tmin = 0.907, Tmax = 1.000k = 1615
12360 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.4436P]
where P = (Fo2 + 2Fc2)/3
3525 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C6H6ClF+·C6H2N3O7γ = 97.743 (1)°
Mr = 374.67V = 716.62 (5) Å3
Triclinic, P1Z = 2
a = 4.4054 (2) ÅMo Kα radiation
b = 11.9881 (5) ŵ = 0.33 mm1
c = 13.7010 (5) ÅT = 200 K
α = 90.057 (1)°0.53 × 0.32 × 0.13 mm
β = 91.803 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2947 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 1.000Rint = 0.014
12360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
3525 reflectionsΔρmin = 0.27 e Å3
238 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6279 (2)0.56237 (8)0.18047 (8)0.0272 (2)
O110.1858 (3)0.60505 (11)0.04084 (9)0.0397 (3)
O120.4639 (3)0.69531 (10)0.06804 (8)0.0430 (3)
O210.8395 (3)1.07312 (9)0.07332 (9)0.0381 (3)
O221.2124 (3)1.06697 (10)0.17928 (10)0.0439 (3)
O311.3048 (3)0.72968 (13)0.35325 (9)0.0478 (3)
O320.9194 (3)0.59811 (10)0.35634 (9)0.0426 (3)
N10.4035 (3)0.67317 (10)0.01741 (9)0.0263 (3)
N20.9866 (3)1.02249 (11)0.13271 (9)0.0298 (3)
N31.0560 (3)0.68383 (11)0.32143 (9)0.0299 (3)
C110.7050 (3)0.66785 (12)0.17296 (10)0.0228 (3)
C120.6014 (3)0.73200 (12)0.09313 (10)0.0234 (3)
C130.6869 (3)0.84526 (12)0.07879 (10)0.0249 (3)
H130.60950.88260.02420.030*
C140.8896 (3)0.90317 (12)0.14653 (10)0.0255 (3)
C151.0104 (3)0.84895 (12)0.22500 (10)0.0263 (3)
H151.15460.88940.26950.032*
C160.9185 (3)0.73573 (12)0.23741 (10)0.0246 (3)
Cl10.28986 (12)0.06232 (4)0.38057 (4)0.04913 (14)
F10.1550 (3)0.16950 (9)0.52432 (7)0.0473 (3)
N40.0749 (3)0.42503 (11)0.19073 (9)0.0252 (2)
H410.080 (5)0.4671 (18)0.1987 (15)0.044 (6)*
H420.026 (5)0.3832 (17)0.1376 (15)0.037 (5)*
H430.262 (5)0.4739 (17)0.1817 (14)0.040 (5)*
C210.0979 (3)0.35612 (12)0.27822 (10)0.0240 (3)
C220.0891 (3)0.25421 (12)0.28441 (11)0.0275 (3)
H220.22870.22820.23250.033*
C230.0676 (4)0.19100 (12)0.36846 (12)0.0311 (3)
C240.1372 (4)0.23142 (14)0.44313 (11)0.0331 (3)
C250.3238 (4)0.33270 (14)0.43629 (11)0.0340 (3)
H250.46350.35860.48820.041*
C260.3048 (3)0.39627 (13)0.35244 (11)0.0288 (3)
H260.43180.46630.34600.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (5)0.0239 (5)0.0325 (5)0.0021 (4)0.0024 (4)0.0049 (4)
O110.0309 (6)0.0452 (7)0.0386 (6)0.0094 (5)0.0049 (5)0.0001 (5)
O120.0619 (8)0.0383 (6)0.0242 (5)0.0074 (6)0.0096 (5)0.0047 (5)
O210.0448 (7)0.0259 (5)0.0441 (7)0.0067 (5)0.0002 (5)0.0062 (5)
O220.0430 (7)0.0330 (6)0.0513 (8)0.0089 (5)0.0068 (6)0.0017 (5)
O310.0333 (6)0.0687 (9)0.0396 (7)0.0038 (6)0.0145 (5)0.0077 (6)
O320.0586 (8)0.0348 (6)0.0334 (6)0.0051 (6)0.0104 (5)0.0090 (5)
N10.0279 (6)0.0239 (6)0.0266 (6)0.0032 (5)0.0062 (5)0.0012 (5)
N20.0325 (7)0.0246 (6)0.0319 (7)0.0016 (5)0.0041 (5)0.0013 (5)
N30.0312 (6)0.0362 (7)0.0238 (6)0.0115 (5)0.0037 (5)0.0000 (5)
C110.0205 (6)0.0256 (6)0.0227 (6)0.0048 (5)0.0011 (5)0.0017 (5)
C120.0225 (6)0.0252 (7)0.0222 (6)0.0026 (5)0.0018 (5)0.0011 (5)
C130.0260 (7)0.0247 (7)0.0244 (6)0.0049 (5)0.0008 (5)0.0020 (5)
C140.0264 (7)0.0224 (6)0.0276 (7)0.0025 (5)0.0015 (5)0.0004 (5)
C150.0240 (7)0.0304 (7)0.0241 (7)0.0028 (5)0.0008 (5)0.0031 (5)
C160.0228 (6)0.0296 (7)0.0217 (6)0.0059 (5)0.0019 (5)0.0019 (5)
Cl10.0631 (3)0.0281 (2)0.0538 (3)0.00226 (18)0.0007 (2)0.01280 (18)
F10.0680 (7)0.0454 (6)0.0299 (5)0.0140 (5)0.0025 (5)0.0148 (4)
N40.0270 (6)0.0236 (6)0.0249 (6)0.0038 (5)0.0040 (5)0.0029 (5)
C210.0260 (7)0.0241 (6)0.0234 (6)0.0089 (5)0.0004 (5)0.0020 (5)
C220.0326 (7)0.0225 (7)0.0280 (7)0.0071 (5)0.0031 (5)0.0002 (5)
C230.0386 (8)0.0222 (7)0.0335 (8)0.0077 (6)0.0024 (6)0.0044 (6)
C240.0442 (9)0.0338 (8)0.0239 (7)0.0149 (7)0.0017 (6)0.0074 (6)
C250.0385 (8)0.0394 (9)0.0244 (7)0.0078 (7)0.0057 (6)0.0002 (6)
C260.0301 (7)0.0291 (7)0.0270 (7)0.0037 (6)0.0028 (5)0.0005 (6)
Geometric parameters (Å, º) top
O1—C111.2695 (17)C15—H150.9500
O11—N11.2244 (16)Cl1—C231.7234 (16)
O12—N11.2300 (17)F1—C241.3439 (17)
O21—N21.2345 (17)N4—C211.4651 (17)
O22—N21.2240 (18)N4—H410.91 (2)
O31—N31.2253 (18)N4—H420.89 (2)
O32—N31.2244 (18)N4—H430.96 (2)
N1—C121.4524 (17)C21—C221.383 (2)
N2—C141.4510 (18)C21—C261.385 (2)
N3—C161.4623 (17)C22—C231.387 (2)
C11—C121.4355 (19)C22—H220.9500
C11—C161.4375 (19)C23—C241.385 (2)
C12—C131.3754 (19)C24—C251.377 (2)
C13—C141.386 (2)C25—C261.386 (2)
C13—H130.9500C25—H250.9500
C14—C151.386 (2)C26—H260.9500
C15—C161.376 (2)
O11—N1—O12123.14 (12)C11—C16—N3119.69 (12)
O11—N1—C12119.24 (12)C21—N4—H41108.0 (13)
O12—N1—C12117.62 (12)C21—N4—H42112.0 (13)
O22—N2—O21123.61 (13)H41—N4—H42106.5 (18)
O22—N2—C14118.27 (13)C21—N4—H43110.8 (12)
O21—N2—C14118.10 (13)H41—N4—H43109.2 (18)
O32—N3—O31123.48 (13)H42—N4—H43110.1 (17)
O32—N3—C16119.18 (13)C22—C21—C26122.33 (13)
O31—N3—C16117.33 (13)C22—C21—N4119.08 (12)
O1—C11—C12122.68 (12)C26—C21—N4118.59 (13)
O1—C11—C16125.23 (12)C21—C22—C23118.25 (14)
C12—C11—C16111.95 (12)C21—C22—H22120.9
C13—C12—C11125.38 (13)C23—C22—H22120.9
C13—C12—N1116.10 (12)C24—C23—C22119.53 (14)
C11—C12—N1118.42 (12)C24—C23—Cl1119.67 (12)
C12—C13—C14117.90 (13)C22—C23—Cl1120.80 (12)
C12—C13—H13121.1F1—C24—C25119.18 (15)
C14—C13—H13121.1F1—C24—C23118.91 (15)
C13—C14—C15121.54 (13)C25—C24—C23121.91 (14)
C13—C14—N2119.12 (13)C24—C25—C26118.99 (14)
C15—C14—N2119.29 (13)C24—C25—H25120.5
C16—C15—C14118.98 (13)C26—C25—H25120.5
C16—C15—H15120.5C21—C26—C25118.99 (14)
C14—C15—H15120.5C21—C26—H26120.5
C15—C16—C11124.21 (12)C25—C26—H26120.5
C15—C16—N3116.09 (12)
O1—C11—C12—C13177.10 (13)C12—C11—C16—C150.7 (2)
C16—C11—C12—C131.1 (2)O1—C11—C16—N32.3 (2)
O1—C11—C12—N10.8 (2)C12—C11—C16—N3178.15 (12)
C16—C11—C12—N1175.13 (12)O32—N3—C16—C15155.61 (14)
O11—N1—C12—C13137.00 (14)O31—N3—C16—C1524.3 (2)
O12—N1—C12—C1342.61 (19)O32—N3—C16—C1125.4 (2)
O11—N1—C12—C1146.39 (19)O31—N3—C16—C11154.69 (14)
O12—N1—C12—C11134.00 (14)C26—C21—C22—C230.3 (2)
C11—C12—C13—C140.1 (2)N4—C21—C22—C23178.97 (13)
N1—C12—C13—C14176.40 (13)C21—C22—C23—C240.3 (2)
C12—C13—C14—C151.8 (2)C21—C22—C23—Cl1179.12 (11)
C12—C13—C14—N2179.32 (13)C22—C23—C24—F1179.76 (14)
O22—N2—C14—C13164.06 (14)Cl1—C23—C24—F10.8 (2)
O21—N2—C14—C1314.7 (2)C22—C23—C24—C250.6 (2)
O22—N2—C14—C1513.5 (2)Cl1—C23—C24—C25178.80 (13)
O21—N2—C14—C15167.71 (14)F1—C24—C25—C26180.00 (15)
C13—C14—C15—C162.2 (2)C23—C24—C25—C260.4 (3)
N2—C14—C15—C16179.71 (13)C22—C21—C26—C250.5 (2)
C14—C15—C16—C110.9 (2)N4—C21—C26—C25178.73 (14)
C14—C15—C16—N3179.77 (13)C24—C25—C26—C210.2 (2)
O1—C11—C16—C15176.55 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O1i0.91 (2)1.85 (2)2.7324 (17)165 (2)
N4—H42···O12ii0.89 (2)2.40 (2)3.0599 (18)131.2 (16)
N4—H42···O11ii0.89 (2)2.60 (2)3.3425 (17)141.8 (16)
N4—H43···O10.96 (2)1.81 (2)2.7579 (16)172.7 (18)
C13—H13···O21iii0.952.473.3152 (19)148
C26—H26···O320.952.493.378 (2)156
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC6H6ClF+·C6H2N3O7
Mr374.67
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)4.4054 (2), 11.9881 (5), 13.7010 (5)
α, β, γ (°)90.057 (1), 91.803 (1), 97.743 (1)
V3)716.62 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.53 × 0.32 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.907, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12360, 3525, 2947
Rint0.014
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.06
No. of reflections3525
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H41···O1i0.91 (2)1.85 (2)2.7324 (17)165 (2)
N4—H42···O12ii0.89 (2)2.40 (2)3.0599 (18)131.2 (16)
N4—H42···O11ii0.89 (2)2.60 (2)3.3425 (17)141.8 (16)
N4—H43···O10.96 (2)1.81 (2)2.7579 (16)172.7 (18)
C13—H13···O21iii0.952.473.3152 (19)148.3
C26—H26···O320.952.493.378 (2)155.8
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+2, z.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o2587–o2588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o637–o638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010a). Acta Cryst. E66, o1187–o1188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010b). Acta Cryst. E66, o1189–o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, S.-W., Chen, B.-X., Ge, Y.-S., Yin, H.-B. & Fang, Y.-P. (2011). Acta Cryst. E67, o1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W.-Q. (2011). Acta Cryst. E67, o860.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds