supplementary materials


bg2495 scheme

Acta Cryst. (2013). E69, m75-m76    [ doi:10.1107/S1600536812051999 ]

cis-Bis(1,10-phenanthroline-[kappa]2N,N')bis(pyridin-4-amine-[kappa]N1)ruthenium(II) bis(hexafluoridophosphate)

M. R. Camilo, F. T. Martins, V. R. S. Malta, J. Ellena and R. M. Carlos

Abstract top

In the title complex, [Ru(C12H8N2)2(C5H6N2)2](PF6)2, the RuII atom is bonded to two [alpha]-diimine ligands, viz. 1,10-phenanthroline (phen), in a cis configuration, in addition with with two 4-aminopyridine (4Apy) ligands, resulting in a distorted octahedral coordination geometry. N-H...F hydrogen-bonding interactions play an important role in the crystal assembly: 21-screw-axis-related complex molecules and PF6- counter-ions alternate in helical chains formed along the a axis by means of these contacts. N-H...[pi] contacts (H...centroid = 3.45 Å) are responsible for cross-linking between the helical chains along [001].

Comment top

Herein we describe the crystalline structure of the complex namely, cis-[Ru(C12H8N2)2(C5H6N2)2](PF6)2, (I). The 4Apy complex has shown important photochemical activity toward delivery of 4Apy to the central nervous system ( Sinha & Shrivastava, 2012).

Asymmetric units of complex (I) is shown in Fig. 1. As can be seen in this figure, each Ru atom is coordinated to six nitrogen atoms from four ligand molecules. Compound (I) crystallizes in the noncentrosymmetric orthorhombic space group P21cn, with one Ru(II) atom, two 1,10-phenanthroline (phen) ligands, two 4-aminopyridine (4Apy) and two PF6- counterions in the asymmetric unit. Contacts of type N—H···F are also responsible for keeping coordinated ligands of (I) in contact with PF6 counterions (Fig. 2). In the packing of this compound, helical chains are formed along the a axis. 21-Screw axis related complex molecules and PF6 counterions are alternated into these chains, which are assembled through the N4A—H4A1···F1A and N4A—H4A2···F3A contacts. A same NH2 group belonging to the 4Apy(2) moiety is hydrogen bonding donor in both interactions which have one of the two crystallographically independent PF6 units as acceptor. The other PF6 counterion is a hydrogen bonding acceptor from the other amine group of the 4Apy(1) moiety through the N4—H4A···F5 contact. This interaction in association with the non-classical C10A—H10A···F6 hydrogen bonding contributes to assemble the helical chains along the [100] direction. More specifically, PF6 units acting as hydrogen bonding acceptors through their F5 and F6 atoms are connected to translation related complex molecules of the helical backbone. At last, the other NH2 hydrogen of the 4Apy(1) moiety is involved in a N—H···π interaction with the π–system of the 4Apy(2) ring. The occurrence of such intermolecular contact is supported on the basis of the moderate separation between H4B and the centroid of the 4Apy(2) ring (labeled as Cg) (3.45 Å). This N4—H4B···Cg interaction is responsible for the cross-linking between helical chains along the [010] direction. Geometric parameters of the classical hydrogen bonding interactions are shown in Table 1.

The complex shows the Ru atom bonded to two a-diimine ligands in a cis configuration with the two 4Apy ligands in the expected distorted-octahedral fashion. The trans N—Ru—N angles (mean values of 176 (2)° (I), deviate slightly from the ideal value of 180°. Corresponding cis angles show similar small deviations from 90°: 90 (6)°. The mean Ru—N(α-diimine) distance [2.07 (1) Å in (I)] is similar to that found in a related coordination complex with the [Ru(bpy)3)]2+ moiety (2.056 Å) (Stoyanov et al., 2002).

In the present structure, the α-diimine coordinated ligands are approximately planar with deviation from the least-square planes less than 2°. The two α-diimine ligands are nearly perpendicular, as indicated by the dihedral angle between their least square planes, 87.43 (9)° in (I).

The dihedral angles do not show any significant distortions in the structure of the complex to relieve the steric hindrance imposed by phenanthroline ligand. Fig. 1 shows a very neat twisted location of the 4Apy ligands with respect to the planes of the phen ligands. The dihedral angles between the least-squares planes calculated through 4Apy and phen ligands are 86.9 (1)° [4Apy(1) and phen(1)] and 79.2 (1)° [4Apy(2) and phen(2)].

Related literature top

For compounds with similar properties, see Bonneson et al. (1983), Salassa et al. (2009). For the use of 4Apy, see Sinha & Shrivastava (2012). For similar structures, see: Stoyanov et al. (2002).

Experimental top

The compound (I) was synthesized from the corresponding aquo-complex (Bonneson et al., 1983) cis-[Ru(α-diimine)2(OH2)2](PF6)2 [α-diimine = 1,10-phenanthroline (phen)] by reacting the latter with 4-Aminopyridine in 1:1 EtOH/H2O mixture under nitrogen atmosphere and for 8 h under reflux. A stoichiometric amount of ammonium hexafluorophosphate was added to precipitate the complex. The resulting solid products were crystallized from acetonitrile. Elemental analysis (%) for (I) RuC34H32N8P2F12O2: calculated: C, 41.80, N, 11.48; H, 3.30; found: C, 41.7; N, 11.5; H, 3.13.8; found: C, 38.70; N, 11.80; H, 3.54.

Refinement top

The H atoms were located from the difference Fourier synthesis and refined using the riding model on their parent atoms with C—H = 0.93 Å for aromatic moieties or 0.96 Å for methyl group of acetonitrile, N—H = 0.86 Å and Uiso(H) = 1.2Ueq for phenyl and amine H atoms or 1.5Ueq for methyl ones.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP-3 drawing of (I). Ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I). In this figure, a helical chain assembled along the a axis of (I) is shown on the left of the panel, while the N—H···π interaction croos-linking the helical chains paralell to the b axis is displayed on the right. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (a) (i) x, -y + 3/2, z - 1/2; (ii) x + 1/2, y + 1/2, -z + 3/2; (iii) x + 1/2, -y + 2, -z + 1; (iv) x + 1, -y + 3/2, z - 1/2; (v) x - 1/2, -y + 1, -z + 1; (vi) x + 1/2, y - 1/2, -z + 3/2; (b) (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y, -z + 1; (iv) -x + 1, -y, -z; (v) -x, -y + 1, -z + 1; (vi) x - 1, y, z; (vii) x - 1, y + 1, z + 1].
cis-Bis(1,10-phenanthroline-κ2N,N')bis(pyridin-4-amine- κN1)ruthenium(II) bis(hexafluoridophosphate) top
Crystal data top
[Ru(C12H8N2)2(C5H6N2)2](PF6)2F(000) = 1880
Mr = 939.65Dx = 1.641 Mg m3
Orthorhombic, P21cnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2n 2aCell parameters from 35299 reflections
a = 13.0943 (3) Åθ = 2.9–25.7°
b = 14.5730 (3) ŵ = 0.59 mm1
c = 19.9366 (5) ÅT = 298 K
V = 3804.37 (15) Å3Prism, red
Z = 40.40 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
5348 reflections with I > 2σ(I)
CCD scansRint = 0.066
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 25.7°, θmin = 2.9°
Tmin = 0.699, Tmax = 0.938h = 1515
29253 measured reflectionsk = 1717
6964 independent reflectionsl = 2424
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0819P)2 + 2.252P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.053(Δ/σ)max = 0.001
wR(F2) = 0.151Δρmax = 0.39 e Å3
S = 1.04Δρmin = 0.48 e Å3
6964 reflectionsAbsolute structure: Flack (1983), 3264 Friedel pairs
514 parametersFlack parameter: 0.25 (6)
1 restraint
Crystal data top
[Ru(C12H8N2)2(C5H6N2)2](PF6)2V = 3804.37 (15) Å3
Mr = 939.65Z = 4
Orthorhombic, P21cnMo Kα radiation
a = 13.0943 (3) ŵ = 0.59 mm1
b = 14.5730 (3) ÅT = 298 K
c = 19.9366 (5) Å0.40 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
6964 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
5348 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.938Rint = 0.066
29253 measured reflectionsθmax = 25.7°
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.151Δρmax = 0.39 e Å3
S = 1.04Δρmin = 0.48 e Å3
6964 reflectionsAbsolute structure: Flack (1983), 3264 Friedel pairs
514 parametersFlack parameter: 0.25 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.15387 (9)0.53833 (3)0.74946 (2)0.05771 (15)
P1A0.07388 (19)0.48572 (17)1.00634 (11)0.0984 (7)
P10.80453 (18)0.52929 (14)0.54965 (10)0.0872 (5)
N3A0.1641 (4)0.6513 (3)0.6842 (2)0.0607 (11)
N10.1410 (4)0.4247 (3)0.8099 (2)0.0702 (12)
N1A0.1800 (3)0.6329 (3)0.8261 (2)0.0623 (13)
F30.9191 (5)0.5450 (5)0.5394 (5)0.185 (4)
N30.3077 (4)0.5015 (3)0.7311 (2)0.0581 (10)
C13A0.0842 (5)0.6831 (4)0.6485 (4)0.0740 (16)
H13A0.02430.64880.64860.089*
C11A0.0013 (5)0.6384 (4)0.8232 (3)0.0651 (14)
C110.0970 (5)0.3550 (4)0.7056 (3)0.0714 (15)
C7A0.0949 (5)0.6733 (5)0.8473 (3)0.0816 (18)
C12A0.0923 (5)0.6686 (4)0.8520 (3)0.0659 (14)
F60.8266 (5)0.4546 (3)0.6050 (3)0.1222 (17)
C6A0.0927 (7)0.7386 (5)0.8989 (4)0.094 (2)
H6A0.15470.7620.91390.112*
C17A0.2501 (5)0.7059 (4)0.6828 (4)0.0773 (17)
H17A0.30690.68830.70780.093*
C4A0.0903 (6)0.7348 (4)0.9049 (3)0.0729 (16)
C120.1115 (5)0.3467 (4)0.7771 (4)0.0769 (17)
F10.7817 (4)0.6041 (5)0.4944 (3)0.150 (3)
C5A0.0065 (6)0.7699 (5)0.9284 (4)0.088 (2)
H5A0.00950.81270.96290.105*
C10.1573 (7)0.4181 (5)0.8760 (3)0.0878 (18)
H10.17490.47060.89990.105*
C2A0.2720 (6)0.7330 (5)0.9000 (4)0.095 (2)
H2A0.33470.75550.91450.115*
C14A0.0856 (6)0.7631 (5)0.6119 (3)0.0773 (17)
H14A0.02820.78050.58760.093*
C90.0738 (5)0.3750 (6)0.5722 (4)0.091 (2)
H90.06740.38270.52610.109*
N2A0.0059 (4)0.5751 (4)0.7731 (2)0.0637 (11)
F20.8036 (11)0.4537 (5)0.4968 (3)0.214 (5)
C15A0.1706 (7)0.8169 (5)0.6111 (3)0.090 (2)
C9A0.1744 (6)0.5747 (8)0.7679 (5)0.107 (3)
H9A0.23320.5520.74770.128*
F50.6885 (5)0.5172 (7)0.5623 (5)0.210 (4)
N20.1136 (4)0.4397 (4)0.6788 (3)0.0670 (12)
F40.8079 (10)0.6051 (5)0.6041 (4)0.216 (4)
C1A0.2674 (6)0.6659 (5)0.8500 (3)0.0759 (18)
H1A0.32830.64330.83250.091*
C3A0.1856 (6)0.7641 (5)0.9268 (4)0.087 (2)
H3A0.18920.80690.96130.105*
N4A0.1747 (7)0.8976 (5)0.5778 (4)0.140 (3)
H4A10.12230.91690.5560.167*
H4A20.22980.92980.57850.167*
C8A0.1830 (6)0.6385 (6)0.8176 (4)0.096 (2)
H8A0.2470.65850.83160.115*
C16A0.2548 (6)0.7859 (5)0.6457 (4)0.088 (2)
H16A0.31540.8190.64410.106*
C40.0975 (6)0.2625 (5)0.8085 (5)0.101 (3)
C30.1177 (8)0.2590 (7)0.8792 (5)0.117 (3)
H30.10940.20460.9030.14*
C10A0.0813 (6)0.5436 (5)0.7473 (3)0.080 (2)
H10A0.07860.49890.71410.096*
C60.0501 (6)0.1941 (6)0.7015 (6)0.101 (3)
H60.02890.14340.67690.121*
C50.0644 (7)0.1858 (6)0.7664 (7)0.118 (3)
H50.05310.1290.78640.141*
C100.1018 (5)0.4487 (5)0.6122 (3)0.0739 (16)
H100.11260.50570.59250.089*
C20.1486 (10)0.3352 (7)0.9097 (4)0.119 (3)
H20.16490.33290.95510.143*
C130.3510 (5)0.5010 (4)0.6701 (3)0.0665 (14)
H130.31140.51930.63380.08*
C170.3694 (5)0.4711 (4)0.7810 (4)0.0706 (15)
H170.34230.46950.82410.085*
C150.5118 (5)0.4449 (4)0.7086 (3)0.0720 (16)
C160.4683 (5)0.4424 (5)0.7732 (4)0.0763 (17)
H160.5060.42180.80980.092*
C140.4488 (5)0.4756 (4)0.6583 (3)0.0748 (16)
H140.4740.4790.61480.09*
N40.6095 (5)0.4218 (5)0.6990 (3)0.1020 (19)
H4A0.63610.42580.65970.122*
H4B0.64580.40290.73220.122*
C80.0556 (6)0.2912 (7)0.6005 (6)0.112 (3)
H80.03570.24190.57390.134*
C70.0666 (5)0.2803 (5)0.6678 (5)0.091 (2)
F1A0.0196 (7)0.5302 (7)0.9756 (4)0.208 (4)
F6A0.1797 (7)0.4604 (5)1.0366 (5)0.171 (3)
F2A0.0723 (8)0.5749 (5)1.0464 (5)0.220 (4)
F3A0.1282 (16)0.5199 (11)0.9488 (7)0.419 (15)
F5A0.0223 (11)0.4465 (7)1.0632 (7)0.289 (8)
F4A0.0741 (7)0.3944 (6)0.9729 (6)0.237 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0572 (2)0.0581 (2)0.0578 (2)0.0022 (3)0.00123 (18)0.00524 (17)
P1A0.1151 (19)0.1057 (16)0.0743 (11)0.0329 (15)0.0118 (12)0.0029 (11)
P10.0829 (12)0.1037 (13)0.0751 (11)0.0042 (11)0.0063 (10)0.0133 (10)
N3A0.061 (3)0.068 (2)0.054 (2)0.003 (3)0.006 (2)0.0084 (18)
N10.068 (3)0.072 (3)0.071 (3)0.003 (3)0.012 (3)0.011 (2)
N1A0.056 (3)0.060 (3)0.070 (3)0.001 (2)0.013 (2)0.007 (2)
F30.082 (4)0.187 (6)0.287 (10)0.019 (4)0.017 (5)0.113 (6)
N30.062 (3)0.056 (3)0.056 (2)0.003 (2)0.002 (2)0.002 (2)
C13A0.067 (4)0.070 (4)0.085 (4)0.001 (3)0.012 (3)0.006 (3)
C11A0.071 (4)0.068 (3)0.056 (3)0.003 (3)0.003 (3)0.007 (3)
C110.056 (3)0.063 (3)0.096 (4)0.003 (3)0.015 (3)0.003 (3)
C7A0.077 (4)0.088 (4)0.080 (4)0.013 (3)0.013 (3)0.001 (3)
C12A0.067 (4)0.069 (3)0.062 (3)0.001 (3)0.009 (3)0.009 (3)
F60.146 (5)0.115 (4)0.106 (3)0.005 (3)0.021 (3)0.023 (3)
C6A0.098 (6)0.085 (5)0.098 (5)0.019 (4)0.023 (5)0.000 (4)
C17A0.067 (4)0.073 (4)0.092 (5)0.008 (3)0.006 (3)0.023 (3)
C4A0.094 (5)0.066 (3)0.059 (3)0.001 (3)0.001 (3)0.004 (3)
C120.063 (3)0.062 (3)0.106 (5)0.002 (3)0.026 (4)0.010 (4)
F10.109 (4)0.184 (5)0.158 (5)0.041 (4)0.049 (3)0.096 (4)
C5A0.103 (6)0.081 (4)0.080 (4)0.015 (4)0.007 (4)0.002 (3)
C10.098 (5)0.094 (4)0.072 (4)0.022 (5)0.024 (4)0.022 (3)
C2A0.081 (5)0.095 (5)0.111 (6)0.012 (4)0.007 (4)0.010 (4)
C14A0.082 (4)0.090 (4)0.061 (3)0.017 (4)0.001 (3)0.014 (3)
C90.066 (4)0.116 (6)0.090 (5)0.002 (4)0.004 (3)0.043 (4)
N2A0.060 (3)0.075 (3)0.057 (2)0.002 (2)0.003 (2)0.003 (2)
F20.405 (16)0.149 (6)0.087 (4)0.094 (7)0.001 (6)0.025 (4)
C15A0.103 (6)0.085 (4)0.082 (4)0.011 (4)0.008 (4)0.030 (3)
C9A0.062 (4)0.155 (8)0.103 (5)0.017 (5)0.001 (4)0.027 (6)
F50.095 (4)0.291 (10)0.243 (8)0.007 (5)0.022 (5)0.141 (8)
N20.054 (3)0.071 (3)0.076 (3)0.001 (2)0.004 (2)0.002 (2)
F40.362 (14)0.132 (5)0.155 (6)0.047 (7)0.047 (7)0.028 (5)
C1A0.079 (5)0.076 (4)0.073 (4)0.003 (3)0.013 (3)0.004 (3)
C3A0.114 (7)0.074 (4)0.074 (4)0.008 (4)0.013 (4)0.014 (3)
N4A0.125 (7)0.123 (6)0.170 (7)0.009 (5)0.004 (5)0.077 (5)
C8A0.070 (4)0.129 (6)0.089 (5)0.017 (4)0.008 (4)0.012 (5)
C16A0.085 (5)0.072 (4)0.109 (5)0.000 (4)0.012 (4)0.017 (4)
C40.086 (5)0.066 (4)0.150 (8)0.007 (4)0.041 (5)0.015 (4)
C30.134 (8)0.102 (6)0.114 (6)0.008 (5)0.033 (5)0.056 (5)
C10A0.060 (4)0.099 (6)0.080 (5)0.005 (3)0.006 (3)0.015 (3)
C60.084 (5)0.074 (5)0.144 (8)0.011 (4)0.029 (5)0.015 (5)
C50.106 (7)0.059 (4)0.187 (10)0.017 (4)0.056 (7)0.001 (6)
C100.074 (4)0.084 (4)0.063 (3)0.002 (3)0.001 (3)0.010 (3)
C20.151 (8)0.112 (6)0.095 (5)0.009 (7)0.032 (6)0.044 (5)
C130.068 (4)0.073 (4)0.059 (3)0.009 (3)0.005 (3)0.006 (3)
C170.070 (4)0.078 (4)0.064 (4)0.005 (3)0.000 (3)0.006 (3)
C150.067 (4)0.066 (3)0.083 (4)0.001 (3)0.002 (3)0.009 (3)
C160.065 (4)0.072 (4)0.093 (4)0.010 (3)0.002 (3)0.002 (3)
C140.081 (4)0.075 (4)0.068 (4)0.005 (3)0.006 (3)0.019 (3)
N40.078 (4)0.130 (5)0.098 (4)0.013 (4)0.008 (3)0.024 (4)
C80.065 (4)0.106 (6)0.164 (9)0.008 (4)0.008 (5)0.075 (7)
C70.050 (4)0.076 (4)0.147 (8)0.005 (3)0.006 (4)0.031 (5)
F1A0.162 (7)0.296 (11)0.167 (7)0.117 (7)0.074 (6)0.047 (6)
F6A0.150 (6)0.179 (7)0.184 (7)0.042 (4)0.052 (6)0.002 (5)
F2A0.199 (8)0.173 (6)0.289 (10)0.035 (6)0.024 (8)0.118 (7)
F3A0.54 (3)0.429 (19)0.291 (13)0.312 (19)0.279 (17)0.282 (14)
F5A0.361 (17)0.187 (7)0.320 (14)0.075 (8)0.219 (13)0.112 (8)
F4A0.174 (7)0.205 (7)0.333 (12)0.027 (6)0.088 (8)0.153 (8)
Geometric parameters (Å, º) top
Ru1—N12.054 (5)C1—H10.93
Ru1—N2A2.065 (5)C2A—C3A1.330 (10)
Ru1—N22.081 (5)C2A—C1A1.399 (10)
Ru1—N1A2.086 (5)C2A—H2A0.93
Ru1—N3A2.103 (4)C14A—C15A1.361 (11)
Ru1—N32.117 (5)C14A—H14A0.93
P1A—F5A1.438 (9)C9—C81.367 (13)
P1A—F3A1.439 (9)C9—C101.386 (9)
P1A—F4A1.488 (7)C9—H90.93
P1A—F1A1.515 (7)N2A—C10A1.334 (9)
P1A—F2A1.526 (7)C15A—N4A1.353 (9)
P1A—F6A1.556 (8)C15A—C16A1.377 (11)
P1—F21.525 (6)C9A—C8A1.363 (12)
P1—F31.531 (7)C9A—C10A1.364 (12)
P1—F41.549 (7)C9A—H9A0.93
P1—F51.550 (7)N2—C101.342 (8)
P1—F61.577 (5)C1A—H1A0.93
P1—F11.579 (5)C3A—H3A0.93
N3A—C13A1.347 (8)N4A—H4A10.86
N3A—C17A1.379 (8)N4A—H4A20.86
N1—C11.338 (8)C8A—H8A0.93
N1—C121.367 (8)C16A—H16A0.93
N1A—C1A1.329 (8)C4—C31.435 (14)
N1A—C12A1.363 (8)C4—C51.464 (13)
N3—C131.341 (7)C3—C21.331 (13)
N3—C171.355 (8)C3—H30.93
C13A—C14A1.375 (9)C10A—H10A0.93
C13A—H13A0.93C6—C51.312 (14)
C11A—N2A1.364 (8)C6—C71.442 (12)
C11A—C7A1.411 (9)C6—H60.93
C11A—C12A1.423 (9)C5—H50.93
C11—N21.363 (8)C10—H100.93
C11—C71.383 (10)C2—H20.93
C11—C121.442 (11)C13—C141.353 (9)
C7A—C8A1.392 (10)C13—H130.93
C7A—C6A1.402 (10)C17—C161.370 (9)
C12A—C4A1.430 (9)C17—H170.93
C6A—C5A1.351 (11)C15—N41.336 (10)
C6A—H6A0.93C15—C141.373 (10)
C17A—C16A1.382 (9)C15—C161.410 (10)
C17A—H17A0.93C16—H160.93
C4A—C3A1.389 (11)C14—H140.93
C4A—C5A1.446 (10)N4—H4A0.86
C12—C41.389 (9)N4—H4B0.86
C5A—H5A0.93C8—C71.358 (13)
C1—C21.388 (10)C8—H80.93
N1—Ru1—N2A89.9 (2)C4A—C5A—H5A120.9
N1—Ru1—N279.6 (2)N1—C1—C2121.8 (8)
N2A—Ru1—N295.5 (2)N1—C1—H1119.1
N1—Ru1—N1A96.70 (19)C2—C1—H1119.1
N2A—Ru1—N1A79.39 (19)C3A—C2A—C1A119.2 (7)
N2—Ru1—N1A173.76 (19)C3A—C2A—H2A120.4
N1—Ru1—N3A177.5 (2)C1A—C2A—H2A120.4
N2A—Ru1—N3A89.9 (2)C15A—C14A—C13A120.3 (6)
N2—Ru1—N3A97.90 (18)C15A—C14A—H14A119.8
N1A—Ru1—N3A85.74 (18)C13A—C14A—H14A119.8
N1—Ru1—N388.6 (2)C8—C9—C10120.1 (8)
N2A—Ru1—N3176.74 (18)C8—C9—H9120
N2—Ru1—N387.06 (19)C10—C9—H9120
N1A—Ru1—N397.92 (18)C10A—N2A—C11A117.1 (6)
N3A—Ru1—N391.8 (2)C10A—N2A—Ru1128.8 (4)
F5A—P1A—F3A176.7 (7)C11A—N2A—Ru1114.0 (4)
F5A—P1A—F4A90.0 (7)N4A—C15A—C14A122.7 (8)
F3A—P1A—F4A87.2 (9)N4A—C15A—C16A119.9 (8)
F5A—P1A—F1A96.3 (8)C14A—C15A—C16A117.4 (6)
F3A—P1A—F1A85.9 (8)C8A—C9A—C10A121.3 (7)
F4A—P1A—F1A101.7 (5)C8A—C9A—H9A119.4
F5A—P1A—F2A85.4 (7)C10A—C9A—H9A119.4
F3A—P1A—F2A97.4 (9)C10—N2—C11117.3 (6)
F4A—P1A—F2A175.1 (7)C10—N2—Ru1129.2 (4)
F1A—P1A—F2A80.6 (5)C11—N2—Ru1113.6 (4)
F5A—P1A—F6A91.1 (8)N1A—C1A—C2A123.0 (7)
F3A—P1A—F6A87.2 (9)N1A—C1A—H1A118.5
F4A—P1A—F6A87.7 (4)C2A—C1A—H1A118.5
F1A—P1A—F6A168.0 (6)C2A—C3A—C4A122.2 (7)
F2A—P1A—F6A90.6 (5)C2A—C3A—H3A118.9
F2—P1—F391.3 (6)C4A—C3A—H3A118.9
F2—P1—F4178.6 (7)C15A—N4A—H4A1120
F3—P1—F487.7 (6)C15A—N4A—H4A2120
F2—P1—F591.3 (7)H4A1—N4A—H4A2120
F3—P1—F5177.4 (6)C9A—C8A—C7A119.3 (7)
F4—P1—F589.7 (7)C9A—C8A—H8A120.4
F2—P1—F689.2 (4)C7A—C8A—H8A120.4
F3—P1—F691.0 (3)C15A—C16A—C17A120.6 (7)
F4—P1—F689.8 (4)C15A—C16A—H16A119.7
F5—P1—F689.3 (4)C17A—C16A—H16A119.7
F2—P1—F190.8 (4)C12—C4—C3116.7 (8)
F3—P1—F189.4 (3)C12—C4—C5117.1 (9)
F4—P1—F190.1 (4)C3—C4—C5126.1 (8)
F5—P1—F190.3 (3)C2—C3—C4118.4 (7)
F6—P1—F1179.6 (4)C2—C3—H3120.8
C13A—N3A—C17A115.2 (5)C4—C3—H3120.8
C13A—N3A—Ru1123.2 (4)N2A—C10A—C9A122.3 (7)
C17A—N3A—Ru1121.0 (4)N2A—C10A—H10A118.8
C1—N1—C12117.1 (6)C9A—C10A—H10A118.8
C1—N1—Ru1128.5 (5)C5—C6—C7121.3 (8)
C12—N1—Ru1114.4 (4)C5—C6—H6119.4
C1A—N1A—C12A116.9 (5)C7—C6—H6119.4
C1A—N1A—Ru1130.0 (4)C6—C5—C4122.5 (8)
C12A—N1A—Ru1113.0 (4)C6—C5—H5118.8
C13—N3—C17114.2 (6)C4—C5—H5118.8
C13—N3—Ru1124.1 (4)N2—C10—C9121.6 (7)
C17—N3—Ru1121.6 (4)N2—C10—H10119.2
N3A—C13A—C14A124.2 (6)C9—C10—H10119.2
N3A—C13A—H13A117.9C3—C2—C1122.0 (8)
C14A—C13A—H13A117.9C3—C2—H2119
N2A—C11A—C7A123.6 (6)C1—C2—H2119
N2A—C11A—C12A116.5 (6)N3—C13—C14124.0 (6)
C7A—C11A—C12A119.9 (6)N3—C13—H13118
N2—C11—C7123.0 (7)C14—C13—H13118
N2—C11—C12116.3 (5)N3—C17—C16125.5 (7)
C7—C11—C12120.7 (6)N3—C17—H17117.2
C8A—C7A—C6A125.2 (7)C16—C17—H17117.2
C8A—C7A—C11A116.3 (6)N4—C15—C14123.6 (7)
C6A—C7A—C11A118.5 (7)N4—C15—C16120.7 (7)
N1A—C12A—C11A117.1 (5)C14—C15—C16115.6 (6)
N1A—C12A—C4A123.5 (6)C17—C16—C15118.5 (7)
C11A—C12A—C4A119.4 (6)C17—C16—H16120.7
C5A—C6A—C7A124.5 (7)C15—C16—H16120.7
C5A—C6A—H6A117.8C13—C14—C15122.0 (6)
C7A—C6A—H6A117.8C13—C14—H14119
N3A—C17A—C16A122.2 (6)C15—C14—H14119
N3A—C17A—H17A118.9C15—N4—H4A120
C16A—C17A—H17A118.9C15—N4—H4B120
C3A—C4A—C12A115.0 (7)H4A—N4—H4B120
C3A—C4A—C5A125.3 (6)C7—C8—C9119.5 (7)
C12A—C4A—C5A119.6 (7)C7—C8—H8120.2
N1—C12—C4123.8 (8)C9—C8—H8120.2
N1—C12—C11116.1 (5)C8—C7—C11118.5 (8)
C4—C12—C11120.1 (7)C8—C7—C6123.1 (8)
C6A—C5A—C4A118.1 (7)C11—C7—C6118.3 (9)
C6A—C5A—H5A120.9
N2A—Ru1—N3A—C13A33.7 (5)C12A—C11A—N2A—Ru10.7 (6)
N2—Ru1—N3A—C13A61.8 (5)N1—Ru1—N2A—C10A81.1 (6)
N1A—Ru1—N3A—C13A113.1 (5)N2—Ru1—N2A—C10A1.6 (6)
N3—Ru1—N3A—C13A149.1 (5)N1A—Ru1—N2A—C10A178.0 (6)
N2A—Ru1—N3A—C17A136.6 (5)N3A—Ru1—N2A—C10A96.4 (6)
N2—Ru1—N3A—C17A127.9 (5)N1—Ru1—N2A—C11A97.0 (4)
N1A—Ru1—N3A—C17A57.2 (5)N2—Ru1—N2A—C11A176.5 (4)
N3—Ru1—N3A—C17A40.6 (5)N1A—Ru1—N2A—C11A0.1 (4)
N2A—Ru1—N1—C185.9 (7)N3A—Ru1—N2A—C11A85.6 (4)
N2—Ru1—N1—C1178.5 (7)C13A—C14A—C15A—N4A177.8 (8)
N1A—Ru1—N1—C16.6 (7)C13A—C14A—C15A—C16A2.7 (11)
N3—Ru1—N1—C191.2 (7)C7—C11—N2—C101.6 (9)
N2A—Ru1—N1—C1293.8 (5)C12—C11—N2—C10179.2 (6)
N2—Ru1—N1—C121.8 (4)C7—C11—N2—Ru1178.0 (5)
N1A—Ru1—N1—C12173.1 (4)C12—C11—N2—Ru11.1 (6)
N3—Ru1—N1—C1289.1 (5)N1—Ru1—N2—C10178.8 (6)
N1—Ru1—N1A—C1A95.8 (6)N2A—Ru1—N2—C1092.3 (6)
N2A—Ru1—N1A—C1A175.5 (6)N3A—Ru1—N2—C101.6 (6)
N3A—Ru1—N1A—C1A84.9 (5)N3—Ru1—N2—C1089.7 (6)
N3—Ru1—N1A—C1A6.3 (6)N1—Ru1—N2—C111.6 (4)
N1—Ru1—N1A—C12A88.2 (4)N2A—Ru1—N2—C1187.3 (4)
N2A—Ru1—N1A—C12A0.5 (4)N3A—Ru1—N2—C11178.0 (4)
N3A—Ru1—N1A—C12A91.2 (4)N3—Ru1—N2—C1190.7 (4)
N3—Ru1—N1A—C12A177.6 (4)C12A—N1A—C1A—C2A1.0 (9)
N1—Ru1—N3—C13134.1 (5)Ru1—N1A—C1A—C2A176.9 (5)
N2—Ru1—N3—C1354.4 (5)C3A—C2A—C1A—N1A1.9 (12)
N1A—Ru1—N3—C13129.4 (5)C1A—C2A—C3A—C4A2.5 (12)
N3A—Ru1—N3—C1343.4 (5)C12A—C4A—C3A—C2A0.4 (11)
N1—Ru1—N3—C1742.1 (5)C5A—C4A—C3A—C2A175.7 (8)
N2—Ru1—N3—C17121.8 (5)C10A—C9A—C8A—C7A0.8 (14)
N1A—Ru1—N3—C1754.4 (5)C6A—C7A—C8A—C9A179.7 (8)
N3A—Ru1—N3—C17140.4 (4)C11A—C7A—C8A—C9A0.4 (11)
C17A—N3A—C13A—C14A0.9 (10)N4A—C15A—C16A—C17A176.6 (7)
Ru1—N3A—C13A—C14A171.7 (5)C14A—C15A—C16A—C17A3.8 (12)
N2A—C11A—C7A—C8A0.9 (9)N3A—C17A—C16A—C15A3.6 (11)
C12A—C11A—C7A—C8A178.4 (6)N1—C12—C4—C31.3 (11)
N2A—C11A—C7A—C6A179.7 (6)C11—C12—C4—C3177.3 (7)
C12A—C11A—C7A—C6A1.0 (9)N1—C12—C4—C5179.2 (7)
C1A—N1A—C12A—C11A175.6 (6)C11—C12—C4—C52.1 (10)
Ru1—N1A—C12A—C11A1.0 (6)C12—C4—C3—C20.3 (13)
C1A—N1A—C12A—C4A3.3 (8)C5—C4—C3—C2179.1 (9)
Ru1—N1A—C12A—C4A179.9 (5)C11A—N2A—C10A—C9A2.1 (11)
N2A—C11A—C12A—N1A1.2 (8)Ru1—N2A—C10A—C9A179.9 (7)
C7A—C11A—C12A—N1A179.5 (6)C8A—C9A—C10A—N2A1.7 (14)
N2A—C11A—C12A—C4A179.9 (5)C7—C6—C5—C40.2 (14)
C7A—C11A—C12A—C4A0.5 (9)C12—C4—C5—C61.3 (13)
C8A—C7A—C6A—C5A178.1 (8)C3—C4—C5—C6178.1 (9)
C11A—C7A—C6A—C5A1.2 (11)C11—N2—C10—C90.0 (9)
C13A—N3A—C17A—C16A2.0 (10)Ru1—N2—C10—C9179.6 (5)
Ru1—N3A—C17A—C16A173.1 (5)C8—C9—C10—N21.3 (11)
N1A—C12A—C4A—C3A2.7 (9)C4—C3—C2—C12.9 (17)
C11A—C12A—C4A—C3A176.2 (6)N1—C1—C2—C34.2 (16)
N1A—C12A—C4A—C5A179.0 (6)C17—N3—C13—C142.1 (8)
C11A—C12A—C4A—C5A0.2 (9)Ru1—N3—C13—C14178.5 (5)
C1—N1—C12—C40.2 (10)C13—N3—C17—C160.7 (9)
Ru1—N1—C12—C4179.5 (5)Ru1—N3—C17—C16177.3 (5)
C1—N1—C12—C11178.5 (6)N3—C17—C16—C150.6 (10)
Ru1—N1—C12—C111.8 (7)N4—C15—C16—C17176.8 (7)
N2—C11—C12—N10.5 (8)C14—C15—C16—C170.7 (9)
C7—C11—C12—N1179.6 (6)N3—C13—C14—C152.1 (10)
N2—C11—C12—C4179.2 (6)N4—C15—C14—C13178.0 (6)
C7—C11—C12—C41.6 (9)C16—C15—C14—C130.6 (9)
C7A—C6A—C5A—C4A0.8 (12)C10—C9—C8—C71.0 (11)
C3A—C4A—C5A—C6A175.6 (7)C9—C8—C7—C110.5 (11)
C12A—C4A—C5A—C6A0.3 (10)C9—C8—C7—C6179.3 (7)
C12—N1—C1—C22.5 (12)N2—C11—C7—C81.9 (10)
Ru1—N1—C1—C2177.9 (7)C12—C11—C7—C8179.0 (6)
N3A—C13A—C14A—C15A1.4 (11)N2—C11—C7—C6179.3 (6)
C7A—C11A—N2A—C10A1.7 (9)C12—C11—C7—C60.2 (9)
C12A—C11A—N2A—C10A177.6 (6)C5—C6—C7—C8178.1 (8)
C7A—C11A—N2A—Ru1179.9 (5)C5—C6—C7—C110.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···F50.862.453.231 (12)151
N4A—H4A1···F1Ai0.862.233.063 (12)163
N4A—H4A2···F3Aii0.862.343.18 (2)165
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···F50.862.453.231 (12)151
N4A—H4A1···F1Ai0.862.233.063 (12)163
N4A—H4A2···F3Aii0.862.343.18 (2)165
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1/2, y+1/2, z+3/2.
Acknowledgements top

The authors wish to thank FAPESP (Proc. 2009/08218–0; 2008/52859–7), CNPq (Universal 470890/2010–0) and CAPES for the grants and fellowships given to this research.

references
References top

Bonneson, P. J., Walsh, L., Pennington, W. T., Cordes, A. W. & Durham, B. (1983). Inorg. Chem. 22, 1761–1765.

Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Salassa, L., Garino, C., Salassa, G., Nervi, C., Gobetto, R., Lamberti, C., Gianolio, D., Bizzarri, R. & Sadler, P. J. (2009). Inorg. Chem. 48, 1469–1481.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sinha, S. K. & Shrivastava, S. K. (2012). Med. Chem. Res. 21, 4395–4402.

Stoyanov, S. R., Villegas, J. M. & Rillema, D. P. (2002). Inorg. Chem. 41, 2941–2945.