[Journal logo]

Volume 69 
Part 2 
Page m87  
February 2013  

Received 29 November 2012
Accepted 29 December 2012
Online 9 January 2013

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.014 Å
R = 0.040
wR = 0.115
Data-to-parameter ratio = 16.4
Details
Open access

catena-Poly[[mu]2-iodido-diiodidobis([mu]3-pyridine-2-thione-[kappa]3S:S:S)([mu]2-pyridine-2-thione-[kappa]2S:S)tricopper(I)]

aCollege of Pharmacy, Fujian Medical University, Fuzhou 350004, People's Republic of China, and bXiamen Maternity and Child Health Care Hospital, Xiamen 361001, People's Republic of China
Correspondence e-mail: carsten.ke@hotmail.com

In the title compound, [Cu3I3(C5H5NS)3]n, a polymeric structure is formed along [100] through bridging iodide and pyridine-2-thione ligands. The metal atoms are engaged in [Cu3S3] and [Cu2S2] rings sharing Cu-S edges, with the [Cu2S2] rings located about inversion centers. CuI atoms bridged by iodide ions exhibit the shortest Cu...Cu separation in the polymer [2.8590 (14) Å]. The three independent CuI atoms all display distorted tetrahedral coordination geometries.

Related literature

For applications of CuI complexes and coordination compounds based on 1H-pyridine-2-thione, see: Kitagawa et al. (1990[Kitagawa, S., Munakata, M., Shimono, H., Matsuyama, S. & Masuda, H. (1990). J. Chem. Soc. Dalton Trans. pp. 2105-2109.]); Raper (1996[Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.], 1997[Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]); García-Vázquez et al. (1999[García-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193-195, 691-745.]); Akrivos (2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.]); Lobana & Castineiras (2002[Lobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603-1611.]). For the structure of a polymer isoformular to the title compound, see: Lobana et al. (2003[Lobana, T. S., Sharma, R., Bermojo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728-7730.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3I3(C5H5NS)3]

  • Mr = 904.80

  • Triclinic, [P \overline 1]

  • a = 10.035 (1) Å

  • b = 10.9220 (11) Å

  • c = 12.2500 (15) Å

  • [alpha] = 105.956 (2)°

  • [beta] = 100.088 (3)°

  • [gamma] = 109.377 (3)°

  • V = 1164.1 (2) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 6.97 mm-1

  • T = 298 K

  • 0.40 × 0.23 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.167, Tmax = 0.421

  • 6013 measured reflections

  • 4009 independent reflections

  • 3215 reflections with I > 2[sigma](I)

  • Rint = 0.028

Refinement
  • R[F2 > 2[sigma](F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.06

  • 4009 reflections

  • 244 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 1.33 e Å-3

  • [Delta][rho]min = -1.45 e Å-3

Table 1
Selected bond lengths (Å)

Cu1-S3 2.315 (2)
Cu1-S1 2.356 (2)
Cu1-S1i 2.480 (2)
Cu1-I1 2.5917 (11)
Cu1-Cu2 2.8590 (14)
Cu1-Cu1i 2.928 (2)
Cu2-S2 2.315 (2)
Cu2-S1i 2.367 (2)
Cu2-I2 2.5632 (11)
Cu2-I1 2.6896 (12)
Cu3-S3 2.273 (2)
Cu3-S2i 2.290 (2)
Cu3-I3 2.5726 (11)
Cu3-S2ii 2.639 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2469 ).


Acknowledgements

The authors thank the Fujian Provincial Foundation (2012-J05150) and the Research Fund of Fujian Medical University (2011BS006) for financial support.

References

Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.  [ISI] [CrossRef] [ChemPort]
García-Vázquez, J. A., Romero, J. & Sousa, A. (1999). Coord. Chem. Rev. 193-195, 691-745.
Kitagawa, S., Munakata, M., Shimono, H., Matsuyama, S. & Masuda, H. (1990). J. Chem. Soc. Dalton Trans. pp. 2105-2109.  [CrossRef]
Lobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603-1611.  [ISI] [CSD] [CrossRef] [ChemPort]
Lobana, T. S., Sharma, R., Bermojo, E. & Castineiras, A. (2003). Inorg. Chem. 42, 7728-7730.  [ISI] [CSD] [CrossRef] [PubMed] [ChemPort]
Raper, E. S. (1996). Coord. Chem. Rev. 153, 199-255.  [CrossRef] [ChemPort] [ISI]
Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.  [CrossRef] [ChemPort] [ISI]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.


Acta Cryst (2013). E69, m87  [ doi:10.1107/S1600536812052051 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.