organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­benz­yl)pyridinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 20 December 2012; accepted 2 January 2013; online 9 January 2013)

In the title salt, C12H11N2O2+·C7H5O6S, the dihedral angle between the benzene and pyridine rings in the 4-(4-nitro­benz­yl)pyridinium cation is 82.7 (2)°. Within the anion there is an intramolecular hydroxy-O—H⋯O(carboxylic acid) bond. In the crystal, the cation forms a single N+—H⋯Osulfonate hydrogen bond with the anion. These cation–anion pairs inter­act through duplex anion carb­oxy­lic acid O—H⋯Osulfonate hydrogen bonds, giving a centrosymmetric cyclic association [graph set R22(16)]. The crystals studied were non-merohedrally twinned.

Related literature

For data on 4-(4-nitro­benz­yl)pyridine adduct and salt structures, see: Smith et al. (1997[Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Crystallogr. 27, 307-317.]); Smith & Wermuth (2010[Smith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1173.]). For examples of the structures of salts of 5-sulfosalicylic acid, see: Raj et al. (2003[Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrysEngComm, 5, 70-76.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N2O2+·C7H5O6S

  • Mr = 432.41

  • Monoclinic, P 21 /c

  • a = 7.4154 (7) Å

  • b = 12.8896 (10) Å

  • c = 19.649 (2) Å

  • β = 92.848 (9)°

  • V = 1875.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 200 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.916, Tmax = 0.980

  • 14534 measured reflections

  • 3671 independent reflections

  • 2631 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.173

  • S = 1.21

  • 3671 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O51A 0.86 1.88 2.732 (5) 172
O2A—H2A⋯O12A 0.95 1.70 2.613 (5) 159
O11A—H11A⋯O53Ai 0.94 1.65 2.583 (4) 172
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The Lewis base 4-(4-nitrobenzyl)pyridine (NBPY) is an analogue of 2-(2,4-dinitrobenzyl)pyridine (DNBPY) which is significant because of its unusual photochromic behaviour in the solid state, although NBPY does not possess such properties. The structure of NBPY is not known but both the structures of a 2:1 co-crystal adduct with 4-aminobenzoic acid (Smith et al., 1997) and a 5-nitrosalicylate salt (Smith & Wermuth, 2010) have been reported. Our reaction of NBPY with 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid = 5-SSA) gave the title compound, C12H11N2O2+ C7H5O6S-, the structure of which is reported herein. The structures of a number of 1:1 salts of 5-SSA are known (Raj et al., 2003; Smith et al., 2004).

With the title compound (Fig. 1), the dihedral angle between the phenyl and pyridine rings in the 4-(4-nitrobenzyl)pyridinium cation is 82.7 (2)° and this forms a single N+H···Osulfonate hydrogen bond with the anion. These cation–anion pairs inter-associate through duplex anion carboxylic acid OH···Osulfonate hydrogen bonds (Table 1, Fig. 2) giving a centrosymmetric cyclic motif [graph set R22(16) (Etter et al., 1990)]. Crystals of the compound are non-merohedrally twinned [BASF factor 0.3201 (Sheldrick, 2008); see Refinement section].

In the 5-SSA monoanion, the usual intramolecular phenol OH···Ocarboxyl hydrogen bond [2.613 (5) Å] is present, essentially maintaining coplanarity of the carboxylic acid group and the benzene ring [torsion angle C2A—C1A—C11A—O11A, -176.6 (4)°] (Raj et al., 2003; Smith et al., 2004).

Related literature top

For data on 4-(4-nitrobenzyl)pyridine adduct and salt structures, see Smith et al. (1997); Smith & Wermuth (2010). For examples of the structures of salts of 5-sulfosalicylic acid, see: Raj et al. (2003); Smith et al. (2004). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 4-(4-nitrobenzyl)pyridine with 5-sulfosalicylic acid in 50 ml of 50% ethanol–water. After concentration to ca. 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless crystals from which a block section was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods but their positional and isotropic displacement parameters were allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O)]. Other H atoms were included in the refinement at calculated positions [C—H = 0.93 Å (aromatic) and 0.97 Å (aliphatic) and Uiso(H) = 1.2Ueq(C)], also using a riding-model approximation. The crystal was found to be non-merohedrally twinned [Twin Rot Mat [PLATON (Spek, 2009)]: matrix, -1 0 0, 0 - 1 0, 0.263 0 1] and the data generated were used in the final refinement (refined BASF = 0.3201).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the hydrogen-bonded NBPY cation and 5-SSA monoanion species in the title salt. Hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A perspective view of the crystal packing in the unit cell showing the centrosymmetric anion-associated hydrogen-bonded cation–anion pairs. For symmetry code (i), see Table 1.
4-(4-Nitrobenzyl)pyridinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C12H11N2O2+·C7H5O6SF(000) = 896
Mr = 432.41Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3757 reflections
a = 7.4154 (7) Åθ = 3.2–28.8°
b = 12.8896 (10) ŵ = 0.23 mm1
c = 19.649 (2) ÅT = 200 K
β = 92.848 (9)°Block, colourless
V = 1875.8 (3) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3671 independent reflections
Radiation source: Enhance (Mo) X-ray source2631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1515
Tmin = 0.916, Tmax = 0.980l = 024
14534 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0464P)2 + 2.5904P]
where P = (Fo2 + 2Fc2)/3
3671 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.54 e Å3
0 constraints
Crystal data top
C12H11N2O2+·C7H5O6SV = 1875.8 (3) Å3
Mr = 432.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4154 (7) ŵ = 0.23 mm1
b = 12.8896 (10) ÅT = 200 K
c = 19.649 (2) Å0.25 × 0.20 × 0.15 mm
β = 92.848 (9)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3671 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2631 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.980Rint = 0.049
14534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.21Δρmax = 0.39 e Å3
3671 reflectionsΔρmin = 0.54 e Å3
272 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O410.5308 (6)1.2075 (3)0.6714 (2)0.0669 (15)
O420.4378 (6)1.1939 (3)0.5666 (2)0.0580 (16)
N10.6089 (5)0.4772 (3)0.58094 (19)0.0343 (14)
N410.4750 (5)1.1565 (3)0.6224 (2)0.0374 (14)
C20.6921 (7)0.5677 (4)0.5906 (3)0.0433 (19)
C30.6005 (7)0.6507 (4)0.6162 (3)0.0363 (16)
C40.4226 (6)0.6405 (3)0.6324 (2)0.0265 (14)
C50.3420 (6)0.5439 (3)0.6213 (2)0.0332 (16)
C60.4369 (7)0.4631 (3)0.5959 (2)0.0347 (16)
C110.3719 (6)0.8367 (3)0.6512 (2)0.0304 (16)
C210.4350 (8)0.8981 (4)0.7051 (2)0.0439 (19)
C310.4738 (7)1.0020 (4)0.6955 (3)0.0447 (19)
C410.4452 (6)1.0441 (3)0.6322 (2)0.0294 (16)
C420.3137 (7)0.7262 (3)0.6619 (2)0.0351 (16)
C510.3888 (6)0.9853 (4)0.5774 (2)0.0328 (16)
C610.3547 (6)0.8809 (3)0.5871 (2)0.0305 (14)
S5A0.96726 (16)0.31180 (8)0.53828 (6)0.0283 (3)
O2A1.0084 (6)0.0013 (3)0.75787 (17)0.0573 (14)
O11A0.8687 (5)0.0882 (2)0.55774 (16)0.0372 (10)
O12A0.9140 (5)0.1398 (2)0.66576 (17)0.0427 (11)
O51A0.7756 (5)0.3169 (2)0.51826 (16)0.0385 (11)
O52A1.0352 (5)0.4070 (2)0.56822 (18)0.0433 (11)
O53A1.0709 (5)0.2754 (2)0.48221 (18)0.0503 (13)
C1A0.9474 (6)0.0393 (3)0.6394 (2)0.0317 (16)
C2A1.0008 (7)0.0680 (4)0.7061 (2)0.0363 (16)
C3A1.0483 (7)0.1698 (4)0.7204 (2)0.0443 (17)
C4A1.0432 (7)0.2439 (4)0.6695 (2)0.0361 (17)
C5A0.9863 (6)0.2161 (3)0.6031 (2)0.0250 (12)
C6A0.9407 (6)0.1142 (3)0.5884 (2)0.0273 (14)
C11A0.9080 (6)0.0709 (3)0.6227 (2)0.0304 (14)
H10.667600.426100.564600.0410*
H20.812400.574900.580200.0520*
H30.658900.714100.622500.0440*
H50.221900.534300.631300.0400*
H60.382100.398800.589000.0420*
H210.451600.869200.748400.0520*
H310.518601.042500.731700.0540*
H510.373601.014800.534300.0390*
H610.319500.839900.549900.0370*
H4210.311400.714500.710600.0420*
H4220.190600.719400.643300.0420*
H2A0.974800.062700.733200.0860*
H3A1.083900.188600.764800.0530*
H4A1.077400.311900.679300.0430*
H6A0.905400.095600.543900.0320*
H11A0.880000.157000.543000.0560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O410.098 (3)0.0271 (19)0.074 (3)0.016 (2)0.012 (3)0.020 (2)
O420.082 (3)0.033 (2)0.059 (3)0.008 (2)0.004 (2)0.0134 (19)
N10.040 (3)0.027 (2)0.036 (2)0.0075 (19)0.0044 (18)0.0012 (18)
N410.034 (2)0.024 (2)0.054 (3)0.0013 (18)0.001 (2)0.006 (2)
C20.032 (3)0.034 (3)0.065 (4)0.000 (2)0.013 (3)0.008 (3)
C30.039 (3)0.020 (2)0.050 (3)0.004 (2)0.004 (2)0.003 (2)
C40.033 (3)0.021 (2)0.025 (2)0.002 (2)0.0044 (19)0.0075 (18)
C50.030 (3)0.031 (2)0.038 (3)0.002 (2)0.003 (2)0.003 (2)
C60.043 (3)0.023 (2)0.037 (3)0.003 (2)0.008 (2)0.001 (2)
C110.033 (3)0.023 (2)0.035 (3)0.002 (2)0.001 (2)0.007 (2)
C210.069 (4)0.035 (3)0.027 (3)0.002 (3)0.004 (2)0.000 (2)
C310.066 (4)0.028 (3)0.039 (3)0.000 (3)0.009 (3)0.011 (2)
C410.029 (3)0.023 (2)0.036 (3)0.001 (2)0.001 (2)0.008 (2)
C420.040 (3)0.026 (2)0.040 (3)0.003 (2)0.008 (2)0.001 (2)
C510.036 (3)0.031 (2)0.031 (3)0.002 (2)0.001 (2)0.001 (2)
C610.035 (3)0.030 (2)0.026 (2)0.006 (2)0.002 (2)0.007 (2)
S5A0.0326 (6)0.0160 (5)0.0364 (6)0.0023 (5)0.0040 (5)0.0030 (5)
O2A0.093 (3)0.051 (2)0.0285 (19)0.004 (2)0.0092 (19)0.0112 (18)
O11A0.059 (2)0.0190 (15)0.0336 (18)0.0051 (16)0.0011 (16)0.0005 (14)
O12A0.059 (2)0.0300 (18)0.040 (2)0.0037 (18)0.0116 (17)0.0138 (16)
O51A0.046 (2)0.0291 (17)0.0398 (19)0.0026 (17)0.0037 (15)0.0011 (15)
O52A0.049 (2)0.0192 (16)0.061 (2)0.0087 (16)0.0056 (18)0.0087 (16)
O53A0.079 (3)0.0230 (16)0.052 (2)0.0096 (18)0.036 (2)0.0085 (16)
C1A0.034 (3)0.028 (2)0.034 (3)0.003 (2)0.011 (2)0.005 (2)
C2A0.047 (3)0.037 (3)0.026 (2)0.010 (2)0.013 (2)0.004 (2)
C3A0.057 (3)0.049 (3)0.027 (3)0.002 (3)0.002 (2)0.011 (2)
C4A0.039 (3)0.031 (3)0.039 (3)0.004 (2)0.009 (2)0.013 (2)
C5A0.022 (2)0.021 (2)0.032 (2)0.0002 (18)0.0023 (19)0.0011 (18)
C6A0.031 (3)0.028 (2)0.023 (2)0.002 (2)0.0027 (19)0.0013 (19)
C11A0.026 (2)0.031 (2)0.035 (3)0.002 (2)0.009 (2)0.005 (2)
Geometric parameters (Å, º) top
S5A—C5A1.774 (4)C31—C411.364 (7)
S5A—O53A1.452 (4)C41—C511.365 (6)
S5A—O51A1.457 (4)C51—C611.384 (6)
S5A—O52A1.441 (3)C2—H20.9300
O41—N411.221 (6)C3—H30.9300
O42—N411.217 (6)C5—H50.9300
O2A—C2A1.353 (6)C6—H60.9300
O11A—C11A1.314 (5)C21—H210.9300
O12A—C11A1.226 (5)C31—H310.9300
O2A—H2A0.9500C42—H4220.9700
O11A—H11A0.9400C42—H4210.9700
N1—C61.336 (6)C51—H510.9300
N1—C21.329 (6)C61—H610.9300
N41—C411.480 (5)C1A—C11A1.484 (6)
N1—H10.8600C1A—C2A1.400 (6)
C2—C31.376 (7)C1A—C6A1.391 (6)
C3—C41.379 (7)C2A—C3A1.384 (7)
C4—C51.394 (6)C3A—C4A1.382 (6)
C4—C421.502 (6)C4A—C5A1.398 (6)
C5—C61.365 (6)C5A—C6A1.383 (6)
C11—C211.385 (6)C3A—H3A0.9300
C11—C421.506 (6)C4A—H4A0.9300
C11—C611.383 (6)C6A—H6A0.9300
C21—C311.385 (7)
O51A—S5A—O53A110.8 (2)C6—C5—H5119.00
O51A—S5A—C5A105.49 (19)N1—C6—H6120.00
O52A—S5A—O53A113.4 (2)C5—C6—H6120.00
O52A—S5A—C5A106.6 (2)C11—C21—H21120.00
O53A—S5A—C5A107.09 (19)C31—C21—H21119.00
O51A—S5A—O52A112.85 (19)C21—C31—H31120.00
C2A—O2A—H2A100.00C41—C31—H31120.00
C11A—O11A—H11A116.00C4—C42—H422108.00
C2—N1—C6122.0 (4)C11—C42—H421108.00
O41—N41—O42123.4 (4)C11—C42—H422108.00
O42—N41—C41118.5 (4)H421—C42—H422107.00
O41—N41—C41118.1 (4)C4—C42—H421108.00
C6—N1—H1119.00C41—C51—H51121.00
C2—N1—H1119.00C61—C51—H51121.00
N1—C2—C3120.1 (5)C11—C61—H61119.00
C2—C3—C4120.4 (5)C51—C61—H61119.00
C5—C4—C42118.9 (4)C6A—C1A—C11A120.4 (4)
C3—C4—C5117.2 (4)C2A—C1A—C11A120.2 (4)
C3—C4—C42123.9 (4)C2A—C1A—C6A119.3 (4)
C4—C5—C6120.9 (4)O2A—C2A—C3A118.2 (4)
N1—C6—C5119.5 (4)O2A—C2A—C1A121.9 (4)
C21—C11—C42121.5 (4)C1A—C2A—C3A119.9 (4)
C21—C11—C61118.3 (4)C2A—C3A—C4A120.7 (4)
C42—C11—C61120.2 (4)C3A—C4A—C5A119.6 (4)
C11—C21—C31120.9 (4)C4A—C5A—C6A119.8 (4)
C21—C31—C41119.0 (5)S5A—C5A—C4A120.1 (3)
N41—C41—C31119.4 (4)S5A—C5A—C6A120.0 (3)
N41—C41—C51118.9 (4)C1A—C6A—C5A120.6 (4)
C31—C41—C51121.7 (4)O12A—C11A—C1A122.8 (4)
C4—C42—C11118.6 (4)O11A—C11A—O12A123.1 (4)
C41—C51—C61118.8 (4)O11A—C11A—C1A114.1 (3)
C11—C61—C51121.1 (4)C2A—C3A—H3A120.00
N1—C2—H2120.00C4A—C3A—H3A120.00
C3—C2—H2120.00C3A—C4A—H4A120.00
C4—C3—H3120.00C5A—C4A—H4A120.00
C2—C3—H3120.00C1A—C6A—H6A120.00
C4—C5—H5120.00C5A—C6A—H6A120.00
O53A—S5A—C5A—C6A54.6 (4)C42—C11—C61—C51172.9 (4)
O52A—S5A—C5A—C4A5.3 (4)C11—C21—C31—C411.4 (8)
O53A—S5A—C5A—C4A126.9 (4)C21—C31—C41—N41176.1 (5)
O51A—S5A—C5A—C4A114.9 (4)C21—C31—C41—C513.6 (8)
O52A—S5A—C5A—C6A176.3 (4)C31—C41—C51—C612.0 (7)
O51A—S5A—C5A—C6A63.5 (4)N41—C41—C51—C61177.7 (4)
C6—N1—C2—C30.6 (8)C41—C51—C61—C111.9 (7)
C2—N1—C6—C50.6 (7)C2A—C1A—C11A—O11A176.6 (4)
O41—N41—C41—C312.5 (6)C2A—C1A—C11A—O12A2.6 (7)
O42—N41—C41—C514.3 (6)C6A—C1A—C11A—O11A0.1 (6)
O41—N41—C41—C51177.8 (4)C6A—C1A—C11A—O12A179.2 (4)
O42—N41—C41—C31175.4 (5)C11A—C1A—C2A—O2A3.8 (7)
N1—C2—C3—C40.4 (8)C11A—C1A—C2A—C3A175.9 (4)
C2—C3—C4—C42178.7 (5)C2A—C1A—C6A—C5A0.0 (7)
C2—C3—C4—C50.4 (7)C11A—C1A—C6A—C5A176.7 (4)
C3—C4—C5—C60.5 (6)C6A—C1A—C2A—O2A179.4 (5)
C42—C4—C5—C6178.6 (4)C6A—C1A—C2A—C3A0.8 (7)
C3—C4—C42—C1122.4 (6)O2A—C2A—C3A—C4A180.0 (5)
C5—C4—C42—C11158.6 (4)C1A—C2A—C3A—C4A0.2 (8)
C4—C5—C6—N10.6 (6)C2A—C3A—C4A—C5A1.2 (8)
C61—C11—C42—C469.8 (6)C3A—C4A—C5A—C6A1.9 (7)
C21—C11—C61—C513.9 (7)C3A—C4A—C5A—S5A176.5 (4)
C21—C11—C42—C4113.5 (5)S5A—C5A—C6A—C1A177.2 (3)
C42—C11—C21—C31174.6 (5)C4A—C5A—C6A—C1A1.3 (7)
C61—C11—C21—C312.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O51A0.861.882.732 (5)172
O2A—H2A···O12A0.951.702.613 (5)159
O11A—H11A···O53Ai0.941.652.583 (4)172
C2—H2···O53Aii0.932.473.078 (6)123
C3A—H3A···O12Aiii0.932.603.323 (6)135
C4A—H4A···O52A0.932.512.893 (6)105
C5—H5···O52Aiv0.932.443.024 (5)120
C6—H6···O52Aiv0.932.593.087 (6)114
C6A—H6A···O11A0.932.402.724 (5)100
C61—H61···O51Av0.932.513.394 (5)160
C42—H421···O41vi0.972.553.427 (6)151
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y+1/2, z+3/2; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H11N2O2+·C7H5O6S
Mr432.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)7.4154 (7), 12.8896 (10), 19.649 (2)
β (°) 92.848 (9)
V3)1875.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.916, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14534, 3671, 2631
Rint0.049
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.173, 1.21
No. of reflections3671
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.54

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O51A0.861.882.732 (5)172
O2A—H2A···O12A0.951.702.613 (5)159
O11A—H11A···O53Ai0.941.652.583 (4)172
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrysEngComm, 5, 70–76.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Crystallogr. 27, 307–317.  CrossRef CAS Web of Science Google Scholar
First citationSmith, G. & Wermuth, U. D. (2010). Acta Cryst. E66, o1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds