[Journal logo]

Volume 69 
Part 2 
Pages i8-i9  
February 2013  

Received 19 December 2012
Accepted 10 January 2013
Online 19 January 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](Sn-S) = 0.002 Å
Disorder in main residue
R = 0.027
wR = 0.070
Data-to-parameter ratio = 24.0
Details
Open access

Pirquitasite, Ag2ZnSnS4

aDepartment of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, USA, and bLunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 85721-0092, USA
Correspondence e-mail: bschumer@email.arizona.edu

Pirquitasite, ideally Ag2ZnSnS4 (disilver zinc tin tetrasulfide), exhibits tetragonal symmetry and is a member of the stannite group that has the general formula A2BCX4, with A = Ag, Cu; B = Zn, Cd, Fe, Cu, Hg; C = Sn, Ge, Sb, As; and X = S, Se. In this study, single-crystal X-ray diffraction data are used to determine the structure of pirquitasite from a twinned crystal from the type locality, the Pirquitas deposit, Jujuy Province, Argentina, with anisotropic displacement parameters for all atoms, and a measured composition of (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4. One Ag atom is located on Wyckoff site Wyckoff 2a (symmetry -4..), the other Ag atom is statistically disordered with minor amounts of Cu and is located on 2c (-4..), the (Zn, Fe, Cd) site on 2d (-4..), Sn on 2b (-4..), and S on general site 8g. This is the first determination of the crystal structure of pirquitasite, and our data indicate that the space group of pirquitasite is I-4, rather than I-42m as previously suggested. The structure was refined under consideration of twinning by inversion [twin ratio of the components 0.91 (6):0.09 (6)].

Related literature

For related structures in the stannite-kesterite series, see: Orlova (1956[Orlova, Z. V. (1956). Trudy Vses. Mag. Nauch. 2, 76-84.]); Hall et al. (1978[Hall, S. R., Szymanski, J. T. & Stewart, J. M. (1978). Can. Mineral. 16, 131-137.]); Kissin & Owens (1979[Kissin, S. A. & Owens, D. R. (1979). Can Mineral. 17, 125-135.]); Bonazzi et al. (2003[Bonazzi, P., Bindi, L., Bernardini, G. P. & Menchetti, S. (2003). Can. Mineral. 41, 639-647.]). For previous work on hocartite and pirquitasite, see: Johan & Picot (1982[Johan, Z. & Picot, P. (1982). Bull. Mineral, 105, 229-235.]). For details on synthetic stannite group phases, see: Salomé et al. (2012[Salomé, P. M. P., Malaquais, J., Fernandes, P. A., Ferreira, M. S., da Cunha, A. F., Leitão, J. P., Gonzales, J. C. & Matinaga, F. M. (2012). Solar En. Mat. Solar Cells, 101, 147-153.]); Sasamura et al. (2012[Sasamura, T., Osaki, T., Kameyama, T., Shibayama, T., Kudo, A., Kuwobata, S. & Torimoto, T. (2012). Chem. Lett. 41, 1009-1011.]); Tsuji et al. 2010[Tsuji, I., Shimodaira, Y., Kato, H., Kobayashi, H. & Kudo, A. (2010). Chem. Mater. 22, 1402-1409.]). For other stannite group minerals, see: Chen et al. (1998[Chen, X., Wada, H., Sato, A. & Mieno, M. (1998). J. Appl. Chem. 139, 144-151.]); Frenzel (1959[Frenzel, G. (1959). N. Jahrb. Min. Abh. 93, 87-114.]); Garin & Parthé (1972[Garin, J. & Parthé, E. (1972). Acta Cryst. B28, 3672-3674.]); Johan et al. (1971[Johan, Z., Picot, P., Pierrot, R. & Kvacek, M. (1971). Bull. Soc. Fr. Min. Cryst. 94, 162-165.]); Kaplunnik et al. (1977[Kaplunnik, L. N., Pobedimskaya, B. A. & Belov, N. V. (1977). Sov. Phys. Crystallogr. 22, 99-100.]); Kissin & Owens (1989[Kissin, S. A. & Owens, D. R. (1989). Can. Mineral. 27, 673-688.]); Marumo & Nowaki (1967[Marumo, F. & Nowaki, W. (1967). Z. Kristallogr. 124, 1-8.]); Murciego et al. (1999[Murciego, A., Pascua, M. I., Babkine, J., Dusausoy, Y., Medenbach, O. & Bernhardt, H. J. (1999). Eur. J. Mineral. 11, 111-117.]); Szymanski (1978[Szymanski, J. T. (1978). Can. Mineral. 16, 147-151.]); Wintenberger (1979[Wintenberger, M. (1979). Mat. Res. Bull. 14, 1195-1202.]).

Experimental

Crystal data
  • (Ag1.87Cu0.13)(Zn0.61Fe0.36Cd0.03)SnS4

  • Mr = 520.26

  • Tetragonal, [I \overline 4]

  • a = 5.7757 (12) Å

  • c = 10.870 (2) Å

  • V = 362.60 (13) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 12.58 mm-1

  • T = 293 K

  • 0.05 × 0.05 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.]) Tmin = 0.572, Tmax = 0.633

  • 1312 measured reflections

  • 575 independent reflections

  • 570 reflections with I > 2[sigma](I)

  • Rint = 0.013

Refinement
  • R[F2 > 2[sigma](F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.17

  • 575 reflections

  • 24 parameters

  • 4 restraints

  • [Delta][rho]max = 1.05 e Å-3

  • [Delta][rho]min = -0.87 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.91 (6)

Table 1
Table 1[link]. Minerals of the Stannite Group

Mineral Formula Space Group Reference
Stannite Cu2FeSnS4 I[\overline{4}]2m Hall et al. (1978[Hall, S. R., Szymanski, J. T. & Stewart, J. M. (1978). Can. Mineral. 16, 131-137.])
Hocartite Ag2FeSnS4 I[\overline{4}]2m Johan & Picot (1982[Johan, Z. & Picot, P. (1982). Bull. Mineral, 105, 229-235.])
Kuramite Cu21+Cu2+SnS4 I[\overline{4}]2m Chen et al. (1998[Chen, X., Wada, H., Sato, A. & Mieno, M. (1998). J. Appl. Chem. 139, 144-151.])
Cernyite Cu2CdSnS4 I[\overline{4}]2m Szymanski (1978[Szymanski, J. T. (1978). Can. Mineral. 16, 147-151.])
Velikite Cu2HgSnS4 I[\overline{4}]2m Kaplunnik et al. (1977[Kaplunnik, L. N., Pobedimskaya, B. A. & Belov, N. V. (1977). Sov. Phys. Crystallogr. 22, 99-100.])
Famatinite Cu21+Cu2+SbS4 I[\overline{4}]2m Garin & Parthé (1972[Garin, J. & Parthé, E. (1972). Acta Cryst. B28, 3672-3674.])
Luzonite Cu21+Cu2+AsS4 I[\overline{4}]2m Marumo & Nowaki (1967[Marumo, F. & Nowaki, W. (1967). Z. Kristallogr. 124, 1-8.])
Barquillite Cu2(Cd,Fe2+)GeS4 I[\overline{4}]2m Murciego et al. (1999[Murciego, A., Pascua, M. I., Babkine, J., Dusausoy, Y., Medenbach, O. & Bernhardt, H. J. (1999). Eur. J. Mineral. 11, 111-117.])
Briartite Cu2FeGeS4 I[\overline{4}]2m Wintenberger (1979[Wintenberger, M. (1979). Mat. Res. Bull. 14, 1195-1202.])
Permingeatite Cu21+Cu2+SbSe4 I[\overline{4}]2m Johan et al. (1971[Johan, Z., Picot, P., Pierrot, R. & Kvacek, M. (1971). Bull. Soc. Fr. Min. Cryst. 94, 162-165.])
Kesterite Cu2ZnSnS4 I[\overline{4}] Kissin & Owens (1979[Kissin, S. A. & Owens, D. R. (1979). Can Mineral. 17, 125-135.])
Ferrokesterite Cu2(Fe,Zn)SnS4 I[\overline{4}] Kissin & Owens (1989[Kissin, S. A. & Owens, D. R. (1989). Can. Mineral. 27, 673-688.])
Pirquitasite Ag2ZnSnS4 I[\overline{4}] This study
Idaite Cu2+Cu2+FeS4 Unknown Frenzel (1959[Frenzel, G. (1959). N. Jahrb. Min. Abh. 93, 87-114.])

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2219 ).


Acknowledgements

We gratefully acknowledge the support of the Arizona Science Foundation and CNPq 202469/2011-5 from the Brazilian Government for MBA. Special thanks go to Dr David Brown for pointing out that bond-valence calculations corroborate the ordering of Cu to the Ag2 site.

References

Bonazzi, P., Bindi, L., Bernardini, G. P. & Menchetti, S. (2003). Can. Mineral. 41, 639-647.  [CrossRef] [ChemPort]
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, X., Wada, H., Sato, A. & Mieno, M. (1998). J. Appl. Chem. 139, 144-151.  [ChemPort]
Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.  [ChemPort]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [details]
Frenzel, G. (1959). N. Jahrb. Min. Abh. 93, 87-114.  [ChemPort]
Garin, J. & Parthé, E. (1972). Acta Cryst. B28, 3672-3674.  [CrossRef] [ChemPort] [details] [ISI]
Hall, S. R., Szymanski, J. T. & Stewart, J. M. (1978). Can. Mineral. 16, 131-137.  [ChemPort]
Johan, Z. & Picot, P. (1982). Bull. Mineral, 105, 229-235.  [ChemPort]
Johan, Z., Picot, P., Pierrot, R. & Kvacek, M. (1971). Bull. Soc. Fr. Min. Cryst. 94, 162-165.  [ChemPort]
Kaplunnik, L. N., Pobedimskaya, B. A. & Belov, N. V. (1977). Sov. Phys. Crystallogr. 22, 99-100.
Kissin, S. A. & Owens, D. R. (1979). Can Mineral. 17, 125-135.  [ChemPort]
Kissin, S. A. & Owens, D. R. (1989). Can. Mineral. 27, 673-688.  [ChemPort]
Marumo, F. & Nowaki, W. (1967). Z. Kristallogr. 124, 1-8.  [CrossRef] [ChemPort]
Murciego, A., Pascua, M. I., Babkine, J., Dusausoy, Y., Medenbach, O. & Bernhardt, H. J. (1999). Eur. J. Mineral. 11, 111-117.  [ChemPort]
Orlova, Z. V. (1956). Trudy Vses. Mag. Nauch. 2, 76-84.
Salomé, P. M. P., Malaquais, J., Fernandes, P. A., Ferreira, M. S., da Cunha, A. F., Leitão, J. P., Gonzales, J. C. & Matinaga, F. M. (2012). Solar En. Mat. Solar Cells, 101, 147-153.
Sasamura, T., Osaki, T., Kameyama, T., Shibayama, T., Kudo, A., Kuwobata, S. & Torimoto, T. (2012). Chem. Lett. 41, 1009-1011.  [ChemPort]
Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Szymanski, J. T. (1978). Can. Mineral. 16, 147-151.
Tsuji, I., Shimodaira, Y., Kato, H., Kobayashi, H. & Kudo, A. (2010). Chem. Mater. 22, 1402-1409.  [ISI] [CrossRef] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [ISI] [CrossRef] [ChemPort] [details]
Wintenberger, M. (1979). Mat. Res. Bull. 14, 1195-1202.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, i8-i9   [ doi:10.1107/S1600536813001013 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.