organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

P,P-Bis[4-(di­methyl­amino)­phen­yl]-N,N-bis­­(propan-2-yl)phosphinic amide

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: bwilliams@uj.ac.za

(Received 23 November 2012; accepted 11 December 2012; online 9 January 2013)

The mol­ecular structure of the title compound, C22H34N3OP, adopts a distorted tetra­hedral geometry at the P atom, with the most noticeable distortion being for the O—P—N angle [117.53 (10)°]. An effective cone angle of 187° was calculated for the compound. In the crystal, weak C—H⋯O inter­actions create infinite chains along [100], whereas C—H⋯π inter­actions propagating in [001] generate a herringbone motif.

Related literature

For the synthesis of ligands derived from phosphinic amides, see: Williams et al. (2009[Williams, D. B. G., Evans, S. J., De Bod, H., Mokhadinyana, M. S. & Hughes, T. (2009). Synthesis, 18, 3106-3112.]). For background to DoM technology, see: Snieckus (1990[Snieckus, V. (1990). Chem. Rev. 90, 879-933.]). For cone angles, see: Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]).

[Scheme 1]

Experimental

Crystal data
  • C22H34N3OP

  • Mr = 387.49

  • Orthorhombic, P 21 21 21

  • a = 6.2960 (4) Å

  • b = 16.6389 (8) Å

  • c = 19.9475 (11) Å

  • V = 2089.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.13 × 0.11 × 0.1 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.985

  • 18896 measured reflections

  • 5212 independent reflections

  • 3840 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.110

  • S = 1.04

  • 5212 reflections

  • 252 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2224 Friedel pairs

  • Flack parameter: 0.11 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11—C16 and C21—C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.59 3.493 (3) 159
C33—H33A⋯O1i 0.98 2.58 3.501 (3) 158
C18—H18ACg1ii 0.98 2.96 3.821 (2) 148
C18—H18CCg2ii 0.98 2.97 3.915 (3) 162
C27—H27CCg1iii 0.98 2.69 3.468 (3) 137
Symmetry codes: (i) x+1, y, z; (ii) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

An expedient rapid synthesis of ligands derived from phosphinic amides that were found to be suitable for the Suzuki-Miyaura reactions at low palladium catalyst loadings was developed (Williams et al., 2009). The brief practical synthesis affords arylphosphine ligands resistant to oxidation and hydrolysis while maintaining high catalyst activity. The synthesis rests strongly on DoM technology (Snieckus, 1990) making use of a directing group that is highly underrepresented in this type of chemistry. We envisioned that the use of phosphinic amides as directing groups, together with phosphinous chloride (Cy2PCl) electrophiles would allow the synthesis of sterically hindered phosphines that are stable to hydrolysis and oxidation. Manipulating the phosphinic amide functionality has been shown to influence the catalytic performance of the resulting alkyl phosphine ligands and the structure reported here is one of the substrates for further ligand studies.

The title compound (see Fig. 1) crystallizes in the orthorhombic space group P212121 (Z=4) with its molecules adopting a distorted tetrahedral arrangement about the phosphorus atom. The O3—P1—N3 angle of 117.53 (10)° shows this distorted arrangement the most prominent, and it is further exemplified by the twisted orientation of the bulky amide substituent to fit into the coordination sphere of the phosphorus atom (seen from the torsion angles C34—N3—P1—O1 = -63.71 (19)° and C31—N3—P1—O1 = 87.2 (2)° respectively). The most common method used for determining the steric behaviour of a phosphane ligand is the Tolman cone angle (Tolman, 1977). We used the geometry from the title compound and adjusted the PO distance to 2.28 Å (the average Ni—P distance used in the original Tolman model) to cancel the bias this may have on the calculated cone angle value. In this way we obtain the effective cone angle (Otto, 2001) value of 187°. Several weak C—H···O interactions are observed in the crystal lattice creating infinitely long chains along the [100] direction (Fig. 2). Additional C—H···π interactions are also observed which propagates along the [001] direction in the crystal lattice (Fig. 3). These interactions (summarized in Table 1) generate a herring-bone packing motif (Fig. 4).

Related literature top

For the synthesis of ligands derived from phosphinic amides, see: Williams et al. (2009). For background to DoM [define DoM] technology, see: Snieckus (1990). For cone angles, see: Tolman (1977); Otto (2001).

Experimental top

Diisopropyl amine (1.55 ml, 5.53 mmol) was added to a solution of PCl3 (241 µL, 2.77 mmol) in toluene (250 ml) at 0 °C. The mixture was allowed to stir for 2 h at room temperature. In a separate flask p-bromo-N,N-dimethylaniline (1.728 g, 8.63 mmol) in THF (5 ml) was added to magnesium turnings (200 mg, 8.22 mmol) in THF (5 ml) and heated to 65 °C. The reaction was initiated with a crystal of iodine and the suspension allowed to stir for 3 h at that temperature. Once the magnesium had fully reacted the two solutions were combined and the salts were removed by filtration through a pad of celite under argon.

The solution was cooled to 0 °C and hydrogen peroxide (30%, 15 ml) was added over 20 minutes. The mixture was allowed to stir for a further 1 h. The product was extracted with EtOAc and H2O and the solvent removed in vacuo. The product was isolated by flash column chromatography (EtOAc).

Crystals were grown by dissolving in a minimal amount of DCM and layering an excess of hexane on top and allowing to stand in a refrigerator until the crystals were formed.

Yield: 60% (yellow solid). 1H NMR: (300 MHz, CDCl3) δH 7.58 (t, 4H, H2, H2`, H6 and H6`, J = 9.9 Hz), 6.61 (d, 4H, H3, H3`, H5 and H5`, J = 7.2 Hz), 3.41 (sept, 2H, NCH(CH3)2, J = 6.9 Hz), 2.90 (s, 12H, NCH(CH3)2), 1.12 (d, 12H, NCH(CH3)2, J = 6.9 Hz). 13C NMR: (75 MHz, CDCl3) δC 151.6 (d, 2 C, C4 and C4`, J = 2.3 Hz), 133.4 (d, 4 C, C2, C2`, C6 and C6`, J = 10.6 Hz), 120.3 (d, 2 C, C1 and C1`, J = 135.3 Hz), 110.7 (d, 4 C, C3, C3`, C5 and C5`, J = 13.0 Hz), 46.5 (d, 2 C. NCH(CH3), J = 4.3 Hz), 398 (s, 4 C, NCH(CH3)2, 32.1 (d, 4 C, NCH(CH3)2, J = 2.6 Hz). 31P NMR: (121 MHz, CDCl3) δP 31.1(S,1P). ElMS: m/z 387 [(M), 10%], 344 [(M—C3H7), 12%], 287 [(M—C6H14N), 100%]. IR: ν (CHCl3) 2980, 1262, 1172. HRMS: Calculated: 387.2440 C22H34N3OP Obtained: 387.2445

Refinement top

The aromatic, methine and methyl atoms were placed in geometrically idealized positions (C—H = 0.95–1.0 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the aromatic and methine H and Uiso(H) = 1.5Ueq(C) for the methyl H respectively. The Flack parameter refined to 0.11 (10).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram showing only the C—H···O interactions (indicated by dashed lines) creating infinitely long chains along the [100] direction.
[Figure 3] Fig. 3. Packing diagram showing only the C—H···π interactions (indicated by dashed lines) propagating along the [001] direction.
[Figure 4] Fig. 4. Packing diagram showing the generated herring-bone motif from the interactions.
P,P-Bis[4-(dimethylamino)phenyl]-N,N- bis(propan-2-yl)phosphinic amide top
Crystal data top
C22H34N3OPF(000) = 840
Mr = 387.49Dx = 1.232 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3113 reflections
a = 6.2960 (4) Åθ = 2.4–25.9°
b = 16.6389 (8) ŵ = 0.15 mm1
c = 19.9475 (11) ÅT = 100 K
V = 2089.7 (2) Å3Prism, colourless
Z = 40.13 × 0.11 × 0.1 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
3840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 48
Tmin = 0.981, Tmax = 0.985k = 1922
18896 measured reflectionsl = 2626
5212 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
5212 reflectionsΔρmax = 0.30 e Å3
252 parametersΔρmin = 0.35 e Å3
0 restraintsAbsolute structure: Flack (1983), 2224 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (10)
Crystal data top
C22H34N3OPV = 2089.7 (2) Å3
Mr = 387.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2960 (4) ŵ = 0.15 mm1
b = 16.6389 (8) ÅT = 100 K
c = 19.9475 (11) Å0.13 × 0.11 × 0.1 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
5212 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3840 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.074
18896 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.35 e Å3
5212 reflectionsAbsolute structure: Flack (1983), 2224 Friedel pairs
252 parametersAbsolute structure parameter: 0.11 (10)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker X8 APEXII 4 K KappaCCD diffractometer using an exposure time of 20 s/frame. A total of 1010 frames were collected with a frame width of 0.5° covering up to θ = 28.33° with 99.9% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.7556 (4)0.08285 (14)0.92323 (10)0.0145 (5)
C120.9663 (4)0.10305 (14)0.91217 (10)0.0161 (5)
H121.06880.06150.90790.019*
C131.0314 (4)0.18282 (14)0.90711 (11)0.0161 (5)
H131.17690.19480.89940.019*
C140.8830 (4)0.24597 (13)0.91337 (10)0.0162 (5)
C150.6722 (4)0.22578 (13)0.92635 (11)0.0166 (5)
H150.56970.26710.93220.02*
C160.6103 (4)0.14573 (14)0.93076 (11)0.0164 (5)
H160.46540.13340.93910.02*
C170.7881 (4)0.38862 (14)0.91197 (13)0.0247 (6)
H17A0.68010.3820.8770.037*
H17B0.72060.3860.95620.037*
H17C0.8580.44090.90650.037*
C181.1650 (5)0.34575 (14)0.89615 (11)0.0208 (6)
H18A1.24880.3280.93480.031*
H18B1.2180.31950.85550.031*
H18C1.17750.40420.89130.031*
C210.7295 (4)0.05075 (13)1.01511 (11)0.0145 (5)
C220.9324 (4)0.04153 (13)1.04203 (11)0.0152 (5)
H221.04110.01791.01550.018*
C230.9787 (4)0.06615 (14)1.10679 (10)0.0177 (5)
H231.11830.0591.12390.021*
C240.8226 (4)0.10145 (13)1.14755 (11)0.0171 (5)
C250.6184 (4)0.10968 (14)1.12077 (11)0.0181 (6)
H250.50910.13281.14740.022*
C260.5730 (4)0.08471 (13)1.05623 (11)0.0166 (5)
H260.43280.09071.03940.02*
C270.7173 (5)0.17979 (17)1.24584 (12)0.0276 (7)
H27A0.58150.15191.25170.041*
H27B0.69550.22821.21870.041*
H27C0.77390.19491.28980.041*
C281.0833 (4)0.12767 (16)1.23701 (12)0.0253 (6)
H28A1.1630.17081.21490.038*
H28B1.15080.07591.22730.038*
H28C1.08260.13681.28550.038*
C310.8422 (4)0.15896 (13)0.88452 (11)0.0178 (5)
H310.87430.17840.83820.021*
C320.6577 (5)0.21017 (14)0.90928 (13)0.0262 (6)
H32A0.61890.19360.95480.039*
H32B0.53550.2030.87940.039*
H32C0.69990.26690.90950.039*
C331.0435 (5)0.17255 (15)0.92493 (13)0.0276 (6)
H33A1.1510.1330.91170.041*
H33B1.01210.16650.97280.041*
H33C1.09730.22690.91640.041*
C340.7688 (4)0.04290 (14)0.80697 (11)0.0187 (6)
H340.72680.0150.80930.022*
C350.5943 (4)0.08600 (16)0.76836 (12)0.0248 (6)
H35A0.63170.14280.76330.037*
H35B0.460.08150.79290.037*
H35C0.57860.06140.7240.037*
C360.9802 (4)0.04601 (15)0.77057 (12)0.0244 (6)
H36A1.08820.01810.79720.037*
H36B1.02250.10220.76420.037*
H36C0.96630.01980.72680.037*
N10.9457 (4)0.32461 (12)0.90623 (10)0.0226 (5)
N20.8668 (4)0.12702 (12)1.21223 (9)0.0207 (5)
N30.7898 (3)0.07164 (11)0.87759 (9)0.0155 (5)
O10.4187 (3)0.01727 (9)0.92616 (7)0.0194 (4)
P10.65325 (10)0.01773 (4)0.93260 (3)0.01474 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0215 (13)0.0097 (11)0.0122 (11)0.0013 (9)0.0018 (10)0.0008 (9)
C120.0240 (14)0.0117 (12)0.0127 (10)0.0043 (11)0.0032 (10)0.0016 (9)
C130.0190 (14)0.0140 (12)0.0154 (10)0.0026 (10)0.0004 (10)0.0007 (9)
C140.0266 (16)0.0102 (11)0.0116 (9)0.0017 (10)0.0041 (10)0.0009 (8)
C150.0230 (14)0.0112 (11)0.0155 (11)0.0054 (11)0.0008 (11)0.0017 (9)
C160.0186 (14)0.0163 (12)0.0142 (10)0.0017 (10)0.0001 (11)0.0004 (9)
C170.0333 (17)0.0087 (12)0.0322 (14)0.0014 (11)0.0030 (12)0.0009 (11)
C180.0296 (16)0.0118 (12)0.0209 (12)0.0017 (12)0.0001 (12)0.0014 (9)
C210.0254 (15)0.0054 (12)0.0126 (10)0.0044 (10)0.0026 (10)0.0009 (8)
C220.0206 (14)0.0071 (11)0.0179 (11)0.0009 (10)0.0039 (10)0.0003 (8)
C230.0223 (15)0.0129 (12)0.0179 (11)0.0005 (11)0.0009 (10)0.0030 (9)
C240.0287 (16)0.0089 (11)0.0136 (10)0.0022 (11)0.0018 (10)0.0017 (8)
C250.0249 (16)0.0132 (12)0.0163 (11)0.0000 (11)0.0057 (11)0.0028 (9)
C260.0208 (14)0.0109 (12)0.0180 (11)0.0002 (10)0.0003 (10)0.0043 (9)
C270.0339 (19)0.0338 (16)0.0152 (12)0.0073 (13)0.0013 (11)0.0078 (11)
C280.0310 (18)0.0296 (16)0.0153 (11)0.0006 (12)0.0012 (11)0.0011 (10)
C310.0291 (15)0.0079 (11)0.0165 (10)0.0023 (11)0.0022 (11)0.0011 (8)
C320.0367 (17)0.0144 (13)0.0275 (12)0.0034 (13)0.0108 (13)0.0031 (10)
C330.0352 (17)0.0160 (13)0.0317 (14)0.0079 (12)0.0089 (14)0.0037 (11)
C340.0268 (15)0.0137 (13)0.0157 (11)0.0002 (11)0.0012 (11)0.0018 (9)
C350.0324 (17)0.0232 (15)0.0187 (12)0.0005 (12)0.0038 (11)0.0011 (10)
C360.0325 (17)0.0218 (14)0.0189 (12)0.0001 (12)0.0047 (12)0.0028 (10)
N10.0260 (13)0.0086 (10)0.0331 (11)0.0005 (9)0.0009 (10)0.0024 (9)
N20.0266 (13)0.0231 (12)0.0124 (9)0.0042 (10)0.0003 (9)0.0037 (8)
N30.0267 (13)0.0081 (10)0.0118 (9)0.0036 (9)0.0004 (8)0.0021 (8)
O10.0211 (10)0.0136 (8)0.0235 (8)0.0005 (7)0.0008 (7)0.0014 (7)
P10.0209 (3)0.0094 (3)0.0140 (3)0.0000 (3)0.0002 (3)0.0005 (2)
Geometric parameters (Å, º) top
C11—C121.386 (3)C26—H260.95
C11—C161.398 (3)C27—N21.451 (3)
C11—P11.803 (2)C27—H27A0.98
C12—C131.393 (3)C27—H27B0.98
C12—H120.95C27—H27C0.98
C13—C141.412 (3)C28—N21.450 (3)
C13—H130.95C28—H28A0.98
C14—N11.374 (3)C28—H28B0.98
C14—C151.393 (3)C28—H28C0.98
C15—C161.391 (3)C31—N31.496 (3)
C15—H150.95C31—C331.519 (4)
C16—H160.95C31—C321.523 (4)
C17—N11.460 (3)C31—H311
C17—H17A0.98C32—H32A0.98
C17—H17B0.98C32—H32B0.98
C17—H17C0.98C32—H32C0.98
C18—N11.439 (3)C33—H33A0.98
C18—H18A0.98C33—H33B0.98
C18—H18B0.98C33—H33C0.98
C18—H18C0.98C34—N31.493 (3)
C21—C221.395 (3)C34—C361.517 (4)
C21—C261.401 (3)C34—C351.521 (3)
C21—P11.800 (2)C34—H341
C22—C231.386 (3)C35—H35A0.98
C22—H220.95C35—H35B0.98
C23—C241.404 (3)C35—H35C0.98
C23—H230.95C36—H36A0.98
C24—N21.387 (3)C36—H36B0.98
C24—C251.399 (3)C36—H36C0.98
C25—C261.383 (3)N3—P11.658 (2)
C25—H250.95O1—P11.4825 (17)
C12—C11—C16117.5 (2)H28A—C28—H28B109.5
C12—C11—P1125.71 (18)N2—C28—H28C109.5
C16—C11—P1116.71 (19)H28A—C28—H28C109.5
C11—C12—C13121.6 (2)H28B—C28—H28C109.5
C11—C12—H12119.2N3—C31—C33112.16 (19)
C13—C12—H12119.2N3—C31—C32113.9 (2)
C12—C13—C14120.5 (2)C33—C31—C32112.4 (2)
C12—C13—H13119.7N3—C31—H31105.9
C14—C13—H13119.7C33—C31—H31105.9
N1—C14—C15121.5 (2)C32—C31—H31105.9
N1—C14—C13120.6 (2)C31—C32—H32A109.5
C15—C14—C13117.9 (2)C31—C32—H32B109.5
C16—C15—C14120.6 (2)H32A—C32—H32B109.5
C16—C15—H15119.7C31—C32—H32C109.5
C14—C15—H15119.7H32A—C32—H32C109.5
C15—C16—C11121.8 (2)H32B—C32—H32C109.5
C15—C16—H16119.1C31—C33—H33A109.5
C11—C16—H16119.1C31—C33—H33B109.5
N1—C17—H17A109.5H33A—C33—H33B109.5
N1—C17—H17B109.5C31—C33—H33C109.5
H17A—C17—H17B109.5H33A—C33—H33C109.5
N1—C17—H17C109.5H33B—C33—H33C109.5
H17A—C17—H17C109.5N3—C34—C36111.3 (2)
H17B—C17—H17C109.5N3—C34—C35113.0 (2)
N1—C18—H18A109.5C36—C34—C35112.0 (2)
N1—C18—H18B109.5N3—C34—H34106.7
H18A—C18—H18B109.5C36—C34—H34106.7
N1—C18—H18C109.5C35—C34—H34106.7
H18A—C18—H18C109.5C34—C35—H35A109.5
H18B—C18—H18C109.5C34—C35—H35B109.5
C22—C21—C26117.6 (2)H35A—C35—H35B109.5
C22—C21—P1124.24 (18)C34—C35—H35C109.5
C26—C21—P1118.10 (19)H35A—C35—H35C109.5
C23—C22—C21121.2 (2)H35B—C35—H35C109.5
C23—C22—H22119.4C34—C36—H36A109.5
C21—C22—H22119.4C34—C36—H36B109.5
C22—C23—C24121.1 (2)H36A—C36—H36B109.5
C22—C23—H23119.5C34—C36—H36C109.5
C24—C23—H23119.5H36A—C36—H36C109.5
N2—C24—C25120.6 (2)H36B—C36—H36C109.5
N2—C24—C23121.8 (2)C14—N1—C18121.5 (2)
C25—C24—C23117.6 (2)C14—N1—C17119.4 (2)
C26—C25—C24121.0 (2)C18—N1—C17119.0 (2)
C26—C25—H25119.5C24—N2—C28120.5 (2)
C24—C25—H25119.5C24—N2—C27119.1 (2)
C25—C26—C21121.4 (2)C28—N2—C27116.6 (2)
C25—C26—H26119.3C34—N3—C31114.68 (17)
C21—C26—H26119.3C34—N3—P1113.89 (16)
N2—C27—H27A109.5C31—N3—P1125.34 (15)
N2—C27—H27B109.5O1—P1—N3117.53 (10)
H27A—C27—H27B109.5O1—P1—C21110.27 (11)
N2—C27—H27C109.5N3—P1—C21107.57 (11)
H27A—C27—H27C109.5O1—P1—C11110.03 (11)
H27B—C27—H27C109.5N3—P1—C11104.36 (11)
N2—C28—H28A109.5C21—P1—C11106.42 (11)
N2—C28—H28B109.5
C16—C11—C12—C131.5 (3)C23—C24—N2—C27165.3 (2)
P1—C11—C12—C13178.49 (16)C36—C34—N3—C3166.8 (3)
C11—C12—C13—C140.2 (3)C35—C34—N3—C3160.2 (3)
C12—C13—C14—N1177.9 (2)C36—C34—N3—P1139.05 (18)
C12—C13—C14—C151.6 (3)C35—C34—N3—P193.9 (2)
N1—C14—C15—C16177.4 (2)C33—C31—N3—C34123.5 (2)
C13—C14—C15—C162.0 (3)C32—C31—N3—C34107.4 (2)
C14—C15—C16—C110.8 (3)C33—C31—N3—P185.7 (3)
C12—C11—C16—C151.0 (3)C32—C31—N3—P143.4 (3)
P1—C11—C16—C15178.30 (17)C34—N3—P1—O163.71 (19)
C26—C21—C22—C230.9 (3)C31—N3—P1—O187.2 (2)
P1—C21—C22—C23177.98 (17)C34—N3—P1—C21171.21 (16)
C21—C22—C23—C240.2 (3)C31—N3—P1—C2137.9 (2)
C22—C23—C24—N2179.4 (2)C34—N3—P1—C1158.44 (18)
C22—C23—C24—C251.0 (3)C31—N3—P1—C11150.6 (2)
N2—C24—C25—C26179.7 (2)C22—C21—P1—O1165.50 (18)
C23—C24—C25—C260.7 (3)C26—C21—P1—O111.5 (2)
C24—C25—C26—C210.4 (3)C22—C21—P1—N365.2 (2)
C22—C21—C26—C251.2 (3)C26—C21—P1—N3117.78 (18)
P1—C21—C26—C25178.44 (17)C22—C21—P1—C1146.2 (2)
C15—C14—N1—C18176.9 (2)C26—C21—P1—C11130.84 (18)
C13—C14—N1—C183.7 (3)C12—C11—P1—O1165.47 (17)
C15—C14—N1—C170.3 (3)C16—C11—P1—O117.5 (2)
C13—C14—N1—C17179.1 (2)C12—C11—P1—N338.5 (2)
C25—C24—N2—C28172.3 (2)C16—C11—P1—N3144.44 (17)
C23—C24—N2—C288.1 (3)C12—C11—P1—C2175.1 (2)
C25—C24—N2—C2715.2 (3)C16—C11—P1—C21101.96 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11—C16 and C21—C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.593.493 (3)159
C33—H33A···O1i0.982.583.501 (3)158
C18—H18A···Cg1ii0.982.963.821 (2)148
C18—H18C···Cg2ii0.982.973.915 (3)162
C27—H27C···Cg1iii0.982.693.468 (3)137
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC22H34N3OP
Mr387.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.2960 (4), 16.6389 (8), 19.9475 (11)
V3)2089.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.13 × 0.11 × 0.1
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18896, 5212, 3840
Rint0.074
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.110, 1.04
No. of reflections5212
No. of parameters252
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.35
Absolute structureFlack (1983), 2224 Friedel pairs
Absolute structure parameter0.11 (10)

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11—C16 and C21—C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.952.593.493 (3)159.1
C33—H33A···O1i0.982.583.501 (3)157.5
C18—H18A···Cg1ii0.982.963.821 (2)148
C18—H18C···Cg2ii0.982.973.915 (3)162
C27—H27C···Cg1iii0.982.693.468 (3)137
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z+1/2; (iii) x+1/2, y+1, z1/2.
 

Footnotes

Industrial Research Limited, 69 Gracefield Rd, Lower Hutt, Wellington, New Zealand.

Acknowledgements

The University of the Free State is thanked for the use of their diffractometer. Financial assistance from Sasol, THRIP and the Research Fund of the University of Johannesburg is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSnieckus, V. (1990). Chem. Rev. 90, 879–933.  CrossRef CAS Web of Science Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. B. G., Evans, S. J., De Bod, H., Mokhadinyana, M. S. & Hughes, T. (2009). Synthesis, 18, 3106–3112.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds